
Statistical learning - STA4042

Exercises sheet

Exercise 1: Multi-label Classification

Let us consider a discrete random variables Y : Ω → Y = {a1, . . . , aK} and a continuous random variable
X : Ω → X = Rd.

1. Recall that X has a density given by

pX(x) =

K∑
k=1

f(x, ak),

for some f : Rd × Y → R, measurable.

2. Show that the Bayes classifier is
g∗(x) ∈ argmax

a∈Y
f(x, a).

3. In the case of binary classification where K = 2 and a1 = 0, a2 = 1, find the Bayes classifier.

Exercise 2: Non symmetric classification

We consider the binary classification problem where Y ∼ B(p) and

X | Y = 0 ∼ U([0, 1/2]),
X | Y = 1 ∼ U([0, 1]).

1. Determine the cumulative distribution function (CDF) of X and its density pX .

2. For any x ∈ [0, 1], compute E[Y 1X≤x].

3. Show that, for any x ∈ [0, 1],

E[Y 1X≤x] =

∫ x

0

η∗(u)pX(u)du,

where η∗P (x) = EP [Y | X = x] is the regression function.

4. Determine the conditional law of Y given X = x and find the form of the Bayes classifier.

Exercise 3: Least Squares, Ridge, and Lasso in Dimension 1

Given two random variables x : Ω → R and ε : Ω → R we consider the random variable:

y = β∗x+ ϵ (1)

for a given β∗ ∈ R that we will try to estimate. The goal of this exercise is to compare, given a data set
((x1, y1), . . . , (x1, y1)) ∈ (R2)n, the least squares estimator:

β̂(MC) ∈ argmin
β∈R

1

n

n∑
i=1

(yi − βxi)
2,

1
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with the ridge estimator

β̂
(R)
λ ∈ argmin

β∈R

1

n

n∑
i=1

(yi − βxi)
2 + γ∥β(R)∥2,

and the Lasso estimator

β̂
(L)
λ ∈ argmin

β∈R

1

n

n∑
i=1

(yi − βxi)
2 + γ∥β(R)∥1.

1. Write the expression of the least squares estimator β̂(MC) in terms of {(xi, yi), i = 1, . . . , n}. Compute
the bias and variance of this estimator.

2. Write the minimization problem that the ridge estimator must solve in this framework and compute
its bias, variance, and quadratic risk.

3. Give an expression for the point x∗ ∈ R where the minimum of the following function is reached:

f(x) = a|x|+ bx2 + cx, x ∈ R, with a, b > 0 and c ∈ R.

Show that:

x∗ = − c

2b

(
1− a

|c|

)
+

.

4. Compute the solution to the minimization problem for the Lasso estimator.

Exercise 4: Properties of the Ridge Estimator

We consider here the same model (1) as in the previous exercice but this time X : Ω → Rd and β∗ ∈ Rd.
The Ridge estimator, given regularizing coefficient γ > 0, expresses:

β̂(R)
γ =

1

n
(X⊤X + γI)−1X⊤Y.

1. Show that the estimator:

β̂(R′) ≡ argmin
β∈Rd,∥β∥≤Mγ

(
n∑

i=1

(Yi −Xiβ)
2

)
,

with Mγ = 1
n∥QX⊤Y ∥ and Q ≡ (X⊤X + γI)−1 is equal to β̂(R).

2. Express the squared norm of the bias of β̂
(R)
γ in terms of the eigenvalues λ1, . . . , λd (with multiplicities)

of X⊤X:

B(R)
γ := ∥E[β̂(R)

γ ]− β∗∥2.

3. Express the variance:

V (R)
γ = E

[
∥β̂(R)

γ − E[β̂(R)
γ ]∥2

]
,

in terms of the noise variance σ2 and the eigenvalues λ1, . . . , λd.
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Exercise 5: Square of the resolvent

This is a difficult problem (too difficult for a final exam exercise). Let us consider again the model (1):

y = xTβ∗ + ε,

with x : Ω → Rp, ε : Ω → R, two independent variables and β∗ ∈ Rp a deterministic vector.

1. Given a train data set X = ((x1, y1), . . . , (xn, yn)) and a test data (x, y), express the train MSE and the
test MSE for the estimation of Y with the Ridge regression as a function of X = (x1, . . . , xn) ∈ Rp×p,
x and β∗. For that, introduce the resolvent matrices Q ≡ (γIp+

1
nXXT )−1 and Q ≡ (γIn+

1
nX

TX)−1

2. We will now try to estimate E[Q2]. Recall from the course the notation:

∀i ∈ [n] : Λi ≡ 1− 1

n
xT
i Q−ixi

where Q−i = (γIp +
1
nX−iX

T
−i)

−1 and X−i = (x1, . . . , xi−1, 0, xi+1, . . . , xn) ∈ Mp,n and the identities:

Q = Q−i +
1

n

Q−ixix
T
i Q−i

Λi
and Qxi =

Q−ixi

Λi

We further introduced the deterministic matrix:

∀∆ ∈ R : Q̃∆ =

(
γIp +

Σ

∆

)−1

with Σ = E[xix
T
i ]

and the scalar Λ̃ ∈ R solution to:

Λ̃ =
1

n
Tr(ΣQ̃Λ̃),

To be able to set concentration results, we assume, as in the course that the matrix X has independent
columns and that it is a λ-Lipschitz transformation of a Gaussian vector Z ∼ N (0, Iq). Assuming
that p

n and ∥Σ∥ are both bounded with a certain constant independent of p, n, q, first bound without
justifications the following probabilities (employing some constants C, c > 0 independent with n, p, q):

� P
(∣∣∣Λi − Λ̃

∣∣∣ ≥ t
)

� P
(∣∣uTQ−ixi

∣∣ ≥ t
)

� P
(∣∣∣xT

i Q−iΣQ̃u
∣∣∣ ≥ t

)
� P

(∣∣ 1
nx

T
i Q−ixi − 1

nTr(E[Q−i]Σ)
∣∣ ≥ t

)
3. Given a deterministic vector u ∈ Rp and a deterministic matrix A ∈ Rp×p, such that ∥u∥ ≤ 1,

∥A∥ ≤ O(1), estimate:

uTQA(Q− Q̃Λ̃)u,

and deduce that:

E[uTQAQu] = uT Q̃Λ̃AQ̃Λ̃u− Tr(ΣQ̃AQ̃)

Λ̃2n
uTE[QΣQ]u+O

(
1√
n

)

4. Playing on the value of A, give an estimate of E[Q2] and E[QΣQ] and deduce an estimation of the
train and test MSE of the Ridge regression.
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