
Lecture 7 : Statistics

Probability theory generally aims at predicting or explaining observations from a distribution model, on
the contrary statistics aim at predicting the model or the parameters of the model from the observation.
That is why, initially, Statistics were called “inverse probability”. There exists two school of statisticians:
frequentist statistics and Bayesian statistics. Without going to much into details, one can merely say that
in the frequentist approach, the parameters are deterministic values that we want to infer. On the contrary,
under the Bayesian approach, the parameters are treated like any other variable and we try to express their
probability law conditionally on the observation. Today the Bayesian approach seems to be predominant in
the literature, its results are also arguably more precise and flexible, that is why we will mainly describe this
approach in our course.

1 Bayesian statistics

1.1 Bayes Formula

Consider n independent copies X1, . . . , Xn of a continuous random vector X : Ω → X , that we regroup in
a data set D = {X1, . . . , Xn}. Given any other continuous random vector θ : Ω → Θ (dependent or not on
D), one has the indentities:

p(D = D, θ = t) = p(θ = t,D = D) ⇐⇒ p(D = D|θ = t)p(θ = t) = p(θ = t|D = D)p(D = D), (7.5)

that lead to the famous Bayes formula:

p(θ = t|D = D) =
p(D = D|θ = t)p(θ = t)

p(D = D)
.

Usually θ and D are ambiguously desgnating at the same time random vectors (as they were introduced)
and elements of Θ, Xn then one typically work with the notations:

� p(θ) ≡ pθ(θ)

� p(D) ≡ pD(D)

� p(θ|D) ≡ p(θ = θ|D = D)

� p(D|θ) ≡ p(D = D|θ = θ).

These notations are, arguably, highly ambiguous, however since their are widely use, and indeed quite
practical, we will also adopt them for this course. The Bayes formula then writes:

p(θ|D) =
p(D|θ)p(θ)

p(D)
=

p(D|θ)p(θ)∫
Θ
p(D|θ)p(θ)dt

, (7.6)

To obtain the right-hand form, we integrated (7.5) on θ to get:∫
Θ

p(D = D|θ = t)p(θ = t)dt =

∫
Θ

p(θ = t|D = D)p(D = D)dt = p(D = D),
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thanks to Lemma 6.22. The form of the denominator in the right-hand term of (7.6) was to be expected
since Lemma 6.22 imposes that

∫
Θ
p(θ|D)dθ =

∫
Θ
p(θ = t|D) = D)dt = 1.

Each of the densities appearing in (7.6) have classical denomination that we provide below.

� p(D = D): The evidence or marginal likelihood,

� p(θ): the prior

� p(D = D|θ = t) : the Likelihood

� p(θ|D): the Posterior.

Let us now describe this approach on a classical example.

Example 7.36 (Tossing coins). Given a coin, let us denote Y the random variable representing the outcome
after tossing the coin (Y ∈ {0, 1}) and θ ∈ [0, 1] the probability of the coin coming up heads. If we toss the
coin N times, recording outcomes in a training data set (it is a random vector) D = (Yn : n = [N ]) whose
entries are independent copies of Y , we seek p(θ|D).

The likelihood expresses:

p(D|θ) =
N∏

n=1

θYn(1− θ)1−Yn = θN1(1− θ)N0 ,

where N1 =
∑N

n=1 I(yn = 1) and N0 =
∑N

n=1 I(yn = 0) (they are both discrete random variables) represent
the number of heads and tails.

One can use an uninformative prior:

p(θ) = Unif(θ|0, 1),

then the posterior would be proportional to the likelyhood.
More generally, bayesian statistician like to assume as prior:

p(θ) = Beta(θ|α̌, β̌) ∝ θα̌−1(1− θ)β̌−1,

where α̌ and β̌ are hyper-parameters. For α̌ = β̌ = 1, we recover the uniform prior. We can think of
the hyper-parameters as pseudocounts, analogous to empirical counts N1 and N0. The strength of the prior
is controlled by Ň = α̌ + β̌, known as the equivalent sample size. We can then compute the posterior by
multiplying the likelihood by the prior:

p(θ|D) ∝ θN1(1− θ)N0θα̌−1(1− θ)β̌−1 ∝ Beta(θ|α̌+N1, β̌ +N0).

Since the posterior has the same form as the prior, it is called a conjugate prior.

1.2 Parameter’s estimates

Definition 10 (MLE and MAP estimate). The Maximum likelihood estimate (MLE) is the parameter θ̂MLE

defined as:

θ̂MLE = argmax
θ∈Θ

p(D|θ)

The Maximum a posteriori (MAP) is the parameter θ̂MAP defined as:

θ̂MAP = argmax
θ∈Θ

p(θ|D) = argmax
θ

log p(θ) + log p(D|θ)

In other word, the MAP is the mode of the posterior distribution.
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Note that the evidence p(D) does not appear in the computations of θ̂MLE and θ̂MAP since it does not
depends on θ.

Example 7.37. Let us return to the setting of Exercise 7.36. Calculus yields:

θ̂MAP =
α̌+N1 − 1

α̌+N1 − 1 + β̌ +N0 − 1
.

If we use a uniform prior, p(θ) ∝ 1, the MAP estimate becomes the MLE, since log p(θ) = 0:

θ̂MLE = argmax
θ

log p(D|θ) = N1

N1 +N0
=

N1

N

This is intuitive and easy to compute. However, the MLE can be very misleading in the small sample
setting. For example, suppose we toss the coins N times, but never see any heads, so N1 = 0. In this case,
we would estimate that θ̂ = 0, which means we would not predict any future observations to be heads either.
This is a very extreme estimate, that is likely due to insufficient data. We can solve this problem using a
MAP estimate with a stronger prior. For example, if we use a Beta(θ|2, 2) prior, we get the estimate

θ̂MAP =
N1 + 1

N1 + 1 +N0 + 1
=

N1 + 1

N + 2

This is called add-one smoothing.
The posterior mode can be a poor summary of the posterior, since it corresponds to picking a single

point from the entire distribution. The posterior mean is a more robust estimate, since it is a summary
statistic derived by integrating over the distribution, θ̄ =

∫
θp(θ|D)dθ. In the case of a beta posterior,

p(θ|D) = Beta(θ|α, β), the posterior mean is given by

θ̄ ≜ E[θ|D] =
α̂

β̂ + α̂
=

α̂

N̂

where N̂ = β̂ + α̂ is the strength (equivalent sample size) of the posterior.
We will now show that the posterior mean is a convex combination of the prior mean, m = α

Ň
and the

MLE, θ̂MLE = N1

N :

E[θ|D] =
α̌+N1

α̌+N1 + β̌ +N0

=
α̌

Ň +N
+

N1

Ň +N
=

Ň

Ň +N
m+

N

Ň +N
θ̂MLE = λm+ (1− λ)θ̂MLE

where λ = N̂
N̂+Ň

is the ratio of the prior to posterior equivalent sample size. We see that the weaker the

prior, the smaller λ, and hence the closer the posterior mean is to the MLE.

1.3 Credible intervals

A posterior distribution is (usually) a high dimensional object that is hard to visualize and work with. A
common way to summarize such a distribution is to compute a point estimate, such as the posterior mean
or mode, and then to compute a credible interval, which quantifies the uncertainty associated with that
estimate. (A credible interval is not the same as a confidence interval, which is a concept from frequentist
statistics which we discuss in Section 3.3.5.1.)

More precisely, we define a 100(1−α)% credible interval to be a (contiguous) region C = (ℓ, u) (standing
for lower and upper) which contains 1− α of the posterior probability mass, i.e.,

Cα(D) = [ℓ, u], where: P (ℓ ≤ θ ≤ u|D) = 1− α (7.7)

There may be many intervals that satisfy(7.7), so we usually choose one such that there is (1−α)/2 mass
in each tail; this is called a central interval. If the posterior has a known functional form, we can compute
the posterior central interval using ℓ = F−1(α/2) and u = F−1(1−α/2), where F is the cdf of the posterior,
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and F−1 is the inverse cdf. For example, if the posterior is Gaussian, p(θ|D) = N (0, 1), and α = 0.05, then
we have ℓ = Φ−1(α/2) = −1.96, and u = Φ−1(1 − α/2) = 1.96, where Φ denotes the cdf of the Gaussian.
This justifies the common practice of quoting a credible interval in the form of µ ± 2σ, where µ represents
the posterior mean, σ represents the posterior standard deviation, and 2 is a good approximation to 1.96.

A problem with central intervals is that there might be points outside the central interval which have
higher probability than points that are inside. This motivates an alternative quantity known as the highest
posterior density or HPD region, which is the set of points which have a probability above some threshold.
More precisely we find the threshold p∗ on the pdf such that

1− α =

∫
θ:p(θ|D)≥p∗

p(θ|D)dθ

and then define the HPD as

Cα(D) = {θ : p(θ|D) ≥ p∗}

2 The problem comes first

In this section, the attention is not put on the model and its parameters that might be to complicated too
be assessed but rather on a general classification of regression task. We present in the table below the main
objects of our framework:

Dataset

D = (Xi, Yi)i=1,··· ,n : Training set with n independent samples, all having the same
distribution as (X,Y ).

X : Predictors, features or inputs of a sample. X ∈ X ⊂ Rp is a p-
length (random) vector.

Y : Response or outcome of a sample. Y ∈ Y ⊂ Rk is a k-length
vector.

Learning paradigm

f(·) : A decision function. f : X → Rk;x → f(x) maps inputs (feature)
space to the outcome-space, say the decision function is f(x) given
a sample X = x.

l(·, ·) : A loss function. l : Y × Rk → R;
(
y, f(x)

)
→ l

(
y, f(x)

)
measure

the discrepancy between the true outcome and the decision func-
tion.

R(f) : The risk of the decision function.

R(f) ≡ E
(
l
(
Y, f(X)

))

Note that in the definition of the risk function (or generalization error) (R(f) = E (l (Y, f(X)))) the
expectation is taken w.r.t. both X and Y . Given a testing dataset Tm = (XTst

j , Y Tst
j )j=1,··· ,m, the risk

function is empirically evaluated as an averaged loss:

R̂m(f) =
1

m

m∑
j=1

l
(
yTst
j , f(xTst

j )
)
.
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The risk function can be used to check the performance of a decision function, yet we want to further
investigate its “efficiency”. To this end, we first introduce the best decision function, namely Bayes decision
function (rule), then compute the discrepancy to measure “efficiency”.

Definition 11 (Bayes decision rule). A Bayes (decision) rule is defined as the smallest risk achievable by
any measurable decision function, that is,

f∗ = argminR(f),

where the minimum is taken over all possible measurable functions.

We illustrate the risk function and its Bayes rule with two loss example, namely, the mis-classification
error (MCE) and the mean square error (MSE).

Definition 12 (MSE). The mis-classification error (MCE) in binary classification (Y ∈ {−1,+1}) is defined
as:

R(f) = P (Y ̸= Sgn(f(X))) = E [1 (Y ̸= Sgn(f(X)))] = E [1 (Y f(X) ≤ 0)] ,

Lemma 7.38 (Mis-classification error). In a binary classification problem, f∗ is a Bayes rule iff

Sgn (f∗(x)) = Sgn (P(Y = 1|X = x)− 1/2) .

Proof. For any binary classifier f and any input x, let us first compute the probability of misclassifying x.
Since f(X) and Y are independent conditionally on X, one can compute:

P(f(X) ̸= Y |X = x) = P(f(X) = 1, Y = −1|X = x) + P(f(X) = −1, Y = 1|X = x)

= P(f(X) = 1|X = x)P(Y = −1|X = x) + P(f(X) = −1|X = x)P(Y = 1|X = x)

= 1f(x)=1P(Y = −1|X = x) + 1f(x)=−1P(Y = 1|X = x)

= 1f(x)=1[1− P(Y = 1|X = x)] + [1− 1f(x)=1]P(Y = 1|X = x)

= [1− 2P(Y = 1|X = x)]1f(x)=1 + P(Y = 1|X = x).

Therefore:

P (f(X) ̸= Y |X = x)− P (t(X) ̸= Y |X = x) = [1− 2P (Y = 1|X = x)]1f(x)=1 + P (Y = 1|X = x)

− [1− 2P (Y = 1|X = x)]1t(x)=1 − P (Y = 1|X = x)

= [1− 2P (Y = 1|X = x)][1f(x)=1 − 1t(x)=1].

We wrote this quantity as a product of two terms, so that its sign depends on the signs of the two terms.

� If 1 − 2P (Y = 1|X = x) > 0, then P (Y = 1|X = x) < 1
2 and, t(x) = −1. Thus, 1t(x)=1 = 0 and in

this case the second term, 1f(x)=1 − 1t(x)=1 = 1f(x)=1 ∈ {0, 1}, is also positive.

� If 1 − 2P (Y = 1|X = x) < 0, then P (Y = 1|X = x) > 1
2 and, t(x) = +1. Thus, 1t(x)=1 = 1 and in

this case the second term, 1f(x)=1 − 1t(x)=1 = 1f(x)=1 − 1 ∈ {−1, 0}, is also negative.

Therefore, the quantity above is positive, since it is the product of either two positive numbers or two
negative numbers. That finally implies that for all f : X → {0, 1}, measurable:

P (f(X) ̸= Y |X = x) ≥ P (t(X) ̸= Y |X = x)

In a regression task, one usually rather works with the so called mean square error.

Definition 13 (MSE). The mean squared error (MSE) in (multi-outcome) regression (Y ∈ Rk) is defined
as:

R(f) = E
[
(Y − f(X))

2
]
,

26



Statistical learning - STA4042

Lemma 7.39. The Bayes rule for the mean-square error is defined as:

f∗(x) = E [Y |X = x] .

Proof. Given a decision function f : X → Rk, the risk for the MSE writes:

R(f) = E
[
(Y − f(X))

2
]
= E

[
E
[
(Y − f(X))

2 | X
]]

= E
[
E
[
(Y − E[Y |X] + E[Y |X]− f(X))

2 | X
]]

Now, we know from Lemma 6.32 that Y − E[Y |X] is independent with E[Y |X]− f(X) conditionally on X,
then a similar result as Lemma 6.35 (just use the fact that E[E[Y |X]− f(X) | X] = 0) allows us to set:

R(f) = E
[
E
[
(Y − E[Y |X])

2 | X
]
+ E

[
(E[Y |X]− f(X))

2 | X
]]

= E
[
(Y − f∗(X))

2
]
+ E

[
(f∗(X)− f(X))

2
]
.

One can then conclude that R(f) ≥ R(f∗) since E
[
(f∗(X)− f(X))

2
]
≥ 0.
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