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What is the difference?

Supervised Unsupervised

Training dataset:
D = {(x1, yn), . . . , (xn, yn)}

Dataset:
D = {x1 . . . , xn}

Given a new data x:
label is fD(x)

Often introduce the data matrix :
X ≡ (x1 . . . , xn) ∈ Rp×n

∗the term“unsupervised regression” appears in dimension reduction problems

Look for f̂D that should satisfy “Y ≈ f̌D(X)”

Regression or Classification

Labels: fD′(x1), . . . , fD′(xn)

Semi-supervised

Given a set of labeled data D, and a set of unlabeled data D′

For new test data x ∈ Rp, label: fD,D′(x).

Just Classification∗: “Clustering”
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Clustering method 1: k-means

Clustering in iterative steps until
convergence:
Step 0 randomly partition the data in k
cluster
Step i→ i+ 1:
• find the centroid of
each cluster
• classify each point
along with the closest
centroid.
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Clustering method 1: k-means

Possibility to fail

Clustering in iterative steps until
convergence:
Step 0 randomly partition the data in k
cluster
Step i→ i+ 1:
• find the centroid of
each cluster
• classify each point
along with the closest
centroid.
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p −→ d with d small
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Clustering method 2: PCA + k-means

(Left) 3d representation of the data, the plane is directed by the two first
principal component. (Right) coordinates of the data projected on the two
first principal components.

Principal component analysis
(PCA) generally used to reduce
dimension.

Given (x1, . . . , xn) ∈ Rp×n,
p −→ d with d small

Look for u1, . . . , ud orthonormal,
such that (uTxi)i∈[n] has the
biggest variance.

Maximize u ∈ Rp:

uT

(
1

n
XXT − 1

n2
X1Tn1nX

T

)
u

Exactly the first d eigenvectors of
( 1nXXT − 1

n2X1Tn1nX
T ).−→ For classification, do k-means on u1, . . . , ud.
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Clustering method 3: Spectral clustering

Two classes:
• x1, . . . , xn/2 ∼ N (µ, Ip)
• xn/2+1, . . . , xn ∼ N (−µ, Ip)
with µ = (2, 0, . . . , 0) ∈ Rp, n = 500, p = 5.

= (K(xi, xj))i,j∈[n] ∈ Rn×n

with for ex. K(x, y) = e−
∥x−y∥2

2p (“Heat kernel”)
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Clustering method 3: Spectral clustering

Two classes:
• x1, . . . , xn/2 ∼ N (µ, Ip)
• xn/2+1, . . . , xn ∼ N (−µ, Ip)
with µ = (2, 0, . . . , 0) ∈ Rp, n = 500, p = 5.

with for ex. K(x, y) = e−
∥x−y∥2

2p (“Heat kernel”)

= (K(xi, xj))i,j∈[n] ∈ Rn×n

When doing PCA, work with
1
nXXT ∈ Rp×p.

=⇒ Look for first eigenvectors of K should capture
class information
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ry

Labeled data

Unlabeled data

Main idea:Setting:

Take advantage of both the labeled and the
unlabeled data to make the classification

Solution

Combines supervised and unsupervised methods

Best formulation given by the Empirical risk
minimization (ERM):

1
nl

∑nl

i=1 Ll(hw(xi), yi) +
1
nu

∑nu

i=1 Lu(hw(zi)) + r(w)

Minimize on w ∈ Rq:

Supervised
Loss

Unsupervised
Loss Regularisation

Unlabeled data: z1, . . . , znu
∈ Rp

Labeled data: (x1, y1), . . . , (xnl
, ynl

) ∈ Rp × {−1, 1}
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Semi-supervised learning with empirical risk minimization

1
nl

∑nl

i=1 Ll(hw(xi), yi)+
1
nu

∑nu

i=1 Lu(hw(zi))+ r(hw)

• Look for a linear boundary: hw(x) = wTx

• Choice for the Supervised loss:

Logistic loss: Ll(t) = log(1 + e−t) (LR)

Exponential loss: Ll(t) = e−t (Adaboost)

Hinge loss: Ll(t) = max(1− t, 0) (SVM)

With yi · wTxi → t:

Classification example: minimize on w ∈ Rq:
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• Choice for the Supervised loss:

Logistic loss: Ll(t) = log(1 + e−t) (LR)

Exponential loss: Ll(t) = e−t (Adaboost)

Hinge loss: Ll(t) = max(1− t, 0) (SVM)

• Choice for the Unsupervised loss:

Pb: Unsupervised clustering loss still not provided

Get inspiration from PCA:

With yi · wTxi → t:

Minimize 1
nu

∑n
i=1 w

T ziz
T
i w
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Semi-supervised learning with empirical risk minimization

1
nl

∑nl

i=1 Ll(hw(xi), yi)+
1
nu

∑nu

i=1 Lu(hw(zi))+ r(hw)

• Look for a linear boundary: hw(x) = wTx

• Choice for the Supervised loss:

• Need to work with centered data:
Set m = 1

nl

∑nl

i=1 xi +
1
nu

∑nu

i=1 zi
xi ← xi −m
zi ← zi −m

Logistic loss: Ll(t) = log(1 + e−t) (LR)

Exponential loss: Ll(t) = e−t (Adaboost)

Hinge loss: Ll(t) = max(1− t, 0) (SVM)

• Choice for the Unsupervised loss:

Pb: Unsupervised clustering loss still not provided

Get inspiration from PCA:

With yi · wTxi → t:

Minimize 1
nu

∑n
i=1 w

T ziz
T
i w

w: first principal component

Lu(t) = t2 but also possible Lu(t) = |t|,
Entropy loss: Lu(t) = t log(t) when Y ∈ {0, 1}

Classification example: minimize on w ∈ Rq:
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Semi-supervised learning with empirical risk minimization
Minimize on w ∈ Rq:

αl

nl

∑nl

i=1 Ll(hw(xi), yi)+
αu

nu

∑nu

i=1 Lu(hw(zi))+ r(hw)
=⇒ Trade-off between αl and αu to
weight the contribution of labeled and
unlabeled data.
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Semi-supervised learning with empirical risk minimization
Minimize on w ∈ Rq:

αl

nl

∑nl

i=1 Ll(hw(xi), yi)+
αu

nu

∑nu

i=1 Lu(hw(zi))+ r(hw)
=⇒ Trade-off between αl and αu to
weight the contribution of labeled and
unlabeled data.

Accuracy for two losses:
Ll = Lu : t 7→ tq with q = 2, 1.5
Low density of unlabeled data:
nu

nl
= 1%

No big influence of the loss, curve
different but maximum equal.


