
Statistical learning - STA4042

AWEQEVR

Final Exam

December, 21st 2024

� Time Limit: 8:30 am - 10:30 am.

� No books, course notes nor electronic devices are allowed.

� The problems are on the other side of the paper.

� Upon completion, the examination paper has to be submitted together with your answer book.

� Except in cases where it is explicitly specified, all the results should be justified with rigorous mathe-
matical proofs.
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Course check (50%)

1. (10%) Given n independent copies X1, . . . , Xn of a continuous random vector X : Ω → X , that we
regroup in a data set D = {X1, . . . , Xn}. Given any other continuous random vector θ : Ω → Θ
(dependent or not on D), provide the expression of the density of θ conditionally on D as it is given
by the Bayes formula. Identify in this formula the likelihood (no proof needed).

2. (10%) Let X ∼ N (µ,Σ) where µ ∈ Rp+q and Σ ∈ R(p+q)×(p+q). Suppose X is partitioned into two
components X1 : Ω → Rp and X2 : Ω → Rq such that for all ω ∈ Ω, X(ω) = (X1(ω), X2(ω)). Express
the density of X1 conditioned on X2 as a function of the elements of the following block decomposition:

µ =

(
µ1

µ2

)
Σ =

(
Σ11 Σ12

Σ21 Σ22

)
,

with µ1 ∈ Rp, µ2 ∈ Rq, Σ11 ∈ Rp×p, Σ12 ∈ Rp×q, Σ21 ∈ Rq×p and Σ22 ∈ Rq×q. One will rely on the
following formula of the inversion of a block matrix M = (E F

G H ):

M−1 =

(
I 0

−H−1G I

)
·
(
(M/H)−1 0

0 H−1

)
·
(
I −FH−1

0 I

)
, (1)

where M/H ≡ E − FH−1G.

Correction: Let us express the density thanks to (1) (with M = Σ:

pX1,X2
(x1, x2) ∝ exp

(
−1

2

(
x1 − µ1

x2 − µ2

)T

·
(

Ip 0
−Σ−1

22 Σ21 Iq

)
·
(
(Σ/Σ22) 0

0 Σ−1
22

)
·
(
Ip −Σ12Σ

−1
22

0 Iq

)
·
(
x1 − µ1

x2 − µ2

))

∝ exp

(
−1

2

(
x1 − µ1|2

)T
Σ−1

1|2
(
x1 − µ1|2

))
· exp

(
1

2
(x2 − µ2)

TΣ−1
22 (x2 − µ2)

)
.

with:

� µ1|2 = µ1 +Σ12Σ
−1
22 (x2 − µ2)

� Σ1|2 = Σ/Σ22 = Σ11 − Σ12Σ
−1
22 Σ21.

Then one can deduce from the identity pX1,X2
(x1, x2) = pX1,X2

(x1|x2)pX2
(x2) that:

pX1,X2(x1|x2) =
1

(2π)
p
2

√
|Σ1|2|

exp

(
−1

2

(
x1 − µ1|2

)T
Σ−1

1|2
(
x1 − µ1|2

))
.

3. (10%) Provide the expression of the mean squared error (MSE) for a regression task and of the Bayes
Rule associated. Prove the validity of the expression you provided for the Bayes rule.

4. (5%) Give the setting and describe the method of rejection sampling (no proof needed).

5. (10%) Given a measurable mapping h : R → R and a density f : R → R+, express the density

g : R → R+ that minimizes the variance of h(X)f(X)
g(X) for X ∼ g and prove the result. Explain how it

can be used for importance sampling.

6. (5%) Explain how to sample a given random variable X by sampling first a random variable Y ∼
Unif[0, 1] and applying a certain transformation ψ : [0, 1] → R. Express the mapping ψ and prove your
result.
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Problem 1 (30%): Kalman filters.
Distribution of points: 2.5% + 2.5% + 2.5% + 5% + 5% + 5% + 2.5% + 5%.

A Kalman filter aim at predicting the value of unknown variable x when the measurement y is noisy.
The general idea is to take into account both the physical equation that predicts the dynamic of the system
but could present some drift and the measurement that actualize the state position but could present some
noise. For simplicity, let us assume that we want to track a moving object whose position (xi)i∈N ∈ (Rp)N

follows the following equation:

x0 ∼ N (0, Q0) and ∀i ≥ 1 : xi = Fxi−1 + vi where vi ∼ N (0, Q). (2)

We will assume that the matrices F (that accounts for the physical behavior of the system) and the covariance
of noises Q0, Q are all known. Besides the noise terms x0, v1, . . . , vi, . . . are assumed to be independent.

Q1: Give a naive estimation of xi depending only on F . Explain why this estimation is prone to drift and
accumulates errors over time.

Correction: One could choose to define the estimator with the iterative expression:

x̂0 = 0

∀i ≥ 1 : x̂i+1 = Fx̂i

That would imply that for all i > 0 : x̂i = 0 which can be very far from what would obtain if for
instance one would set x0 ̸= 0, then the drift after i iterations would be equal to F ix0 which can be
very big depending on F .

We are able to solve the drift issue thanks to measurements (yi)i∈N ∈ (Rq)N that depend on the position
through the following equation:

yi = Hxi + wi where wi ∼ N (0, R). (3)

The goal is then to find an estimator x̂i depending on y1, . . . , yi that will approximate the real position xi.
To simplify the notation, one will denote1 Yi = {y0, . . . , yi}. let us chose as estimator x̂i for xi the vector
x ∈ Rp that minimizes the loss:

J(x) = E
[
(xi − x)2 | Yi

]
. (4)

Q2: Show that x̂i = E[xi|Yi].

Correction: Given x ∈ Rp let us bound:

J(x) = E
[
(xi − x)2 | Yi

]
= E

[
(xi − E[xi|Yi] + E[xi|Yi]− x)2 | Yi

]
= E

[
(xi − E[xi|Yi])

2
]
+ 2E [(xi − E[xi|Yi]) (E[xi|Yi]− x) | Yi] + E

[
(E[xi|Yi]− x)2 | Yi

]
= E

[
(xi − E[xi|Yi])

2
]
+ E

[
(E[xi|Yi]− x)2 | Yi

]
≥ E

[
(xi − E[xi|Yi])

2
]
= J(E[xi|Yi]).

Therefore, the minimum of J(x) is indeed reached at x̂i = E[xi|Yi].

This estimation is done recursively. At each time step, we will compute the conditional expectation
x̂i ≡ E[xi|Yi] and the conditional covariance Pi from the previous step (the use of Pi will be made clearer
later).

Q3: Express the explicit value of x̂0 and P0.

Correction: This question was hard, using the next questions, you know that:

x0|−1 ≡ E[x0] = 0 and P0|−1 ≡ E[x0xT0 ]− x0|−1x
T
0|−1 = Q,

1The sequence Y0, . . . ,Yi, . . . is traditionally called a “filtration”.
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thus the formulas given in Question provides:

x̂0 = QH(HQH +R)−1y0

P0 = Q−QH(HQH +R)−1HQ

Q4: Given i ≥ 1, assuming that x̂i−1 and Pi−1 are known, express:

xi|i−1 ≡ E[xi|Yi−1] and Pi|i−1 ≡ E[xixTi |Yi−1]− xi|i−1x
T
i|i−1.

Correction: Let us compute from the formulas we are given:

� xi|i−1 = E[Fxi−1 + vi|Yi−1] = FE[xi−1|Yi−1] + E[vi|Yi−1] = Fx̂i−1

� E[xixTi |Yi−1] = E[Fxi−1x
T
i−1F + 2xTi−1Fvi + vTi vi|Yi−1] = FE[xi−1x

T
i−1|Yi−1]F + E[vTi vi].

thus xi|i−1 = Fx̂i−1 and Pi|i−1 = FPiF +Q.

Q5: Let us denote zi = ( xi
yi ) Express (in block form) the mean and the covariance of zi conditionally on

Yi−1 and provide its density (one can use the notations xi|i−1 and Pi|i−1 to stay as simple as possible).

Correction: Let us express from previous questions:

E[zi|Yi−1] =

(
xi|i−1

Hxi|i−1

)
To compute the covariance, one needs to express:

� E[yixTi |Yi−1] = E[HxixTi + wix
T
i |Yi−1] = HE[xixTi |Yi−1]

� E[yiyTi |Yi−1] = E[HxixTi H + 2wix
T
i H + wix

T
i |Yi−1] = HE[xixTi |Yi−1]H +R

therefore, one can finally express:

E[zizTi |Yi−1]− E[zi|Yi−1]E[zi|Yi−1]
T =

(
Pi|i−1 Pi|i−1H
HPi|i−1 HPi|i−1H +R

)
,

If we denote p and q, respectively the dimension of X and Y the density of z conditionally on Yi−1

writes:

p(z|Yi−1) =
1

(2π)
p+q
2

√∣∣∣ Pi|i−1 Pi|i−1H

HPi|i−1 HPi|i−1H+R

∣∣∣ exp
(
−1

2

(
z −

(
xi|i−1

Hxi|i−1

))T ( Pi|i−1 Pi|i−1H

HPi|i−1 HPi|i−1H+R

)−1 (
z −

(
xi|i−1

Hxi|i−1

)))

Q6: Deduce the value of x̂i = E[xi|Yi] = E[xi|yi,Yi−1] and Pi, the covariance of xi knowing Yi (question 2
of the course check could be helpful here).

Correction: One can deduce from the course check that:

x̂i = E[xi|Yi] = xi|i−1 + Pi|i−1H(HPi|i−1H +R)−1(yi −Hxi|i−1)

Pi = Pi|i−1 − Pi|i−1H(HPi|i−1H +R)−1HPi|i−1

Q7: Explain the different steps of the Kalman filter to estimate the position xi at each time step.

Correction: One start with the values x̂0 = 0 and Pi = Q0 and at each time step i, given x̂i−1 and
Pi−1, one can estimate consequently:

4



Statistical learning - STA4042

(a) xi|i−1 = Fx̂i−1 and Pi|i−1 = FPiF +Q

(b) x̂i = xi|i−1 + Pi|i−1H(HPi|i−1H +R)−1(yi −Hxi|i−1)

Pi = Pi|i−1 − Pi|i−1H(HPi|i−1H +R)−1HPi|i−1

Q8: Let us assume that the law governing the position xi is now:

∀k ≥ 1 : xi = Fxi−1 +Gui + vi where vi ∼ N (0, Q),

for a certain known sequence of inputs u1, . . . , ui, . . .. Deduce the Kalman filter procedure in this new
setting.

Correction: In this setting, the good choice for the first step is x̂0 = Gu0 and Pi = Q0. Then,
assuming that x̂i−1 and Pi−1 are known, one can evaluate:

xi|i−1 = Fx̂i−1 +Gui−1

and removing directly the projections with zero mean independent gaussian vectors, one gets:

E[xixTi |Yi−1] = E
[
Fxi−1x

T
i−1F +Gui−1u

T
i−1G+ Fxi−1u

T
i−1G+Gui−1x

T
i−1F + viv

T
i |Yi−1

]
= FE

[
xi−1x

T
i−1 |Yi−1

]
F +Gui−1u

T
i−1G+ Fx̂i−1u

T
i−1G+Gui−1x̂

T
i−1F +Q

xi|i−1x
T
i|i−1 = Fx̂i−1x̂

T
i−1F +Gui−1u

T
i−1G+ Fx̂i−1u

T
i−1G+Gui−1x

T
i−1F,

thus, as before:

Pi|i−1 = E[xixTi |Yi−1]− xi|i−1x
T
i|i−1 = FPi−1F +Q.

The second step is the same:

x̂i = xi|i−1 + Pi|i−1H(HPi|i−1H +R)−1(yi −Hxi|i−1)

Pi = Pi|i−1 − Pi|i−1H(HPi|i−1H +R)−1HPi|i−1.

Problem 2 (20%): Classification.
Distribution of points: 7.5% + 5% + 5% + 2.5%.

Q1: Given k-class classification setting with an observation X : Ω → Rp and a label Y : Ω → [K] provide
the Bayes rule g∗ : Rp → [k] that minimizes the risk associated to the mis-classification loss and justify.

Correction: Let us denote the misclassification loss l(z, y) = 1z ̸=y, and introduce:

g∗(x) = argmax
a∈Y

P (Y = a | X = x).

Given a decision function f : X → Y, one can bound from below:

R(f) = E[l(f(X), Y )] = E[1f(X )̸=Y ] = E[E[1f(X )̸=Y | X]] = E

[
K∑

k=1

E[1f(X)=ak
1Y ̸=ak

| X]

]

= E

[
K∑

k=1

E[1f(X)=ak
]E[1Y ̸=ak

| X]

]
= E

[
K∑

k=1

P(f(X) = ak) (1− P(Y = ak | X))

]

=

K∑
k=1

P(f(X) = ak)− E

[
K∑

k=1

1f(X)=ak
P(Y = ak | X)

]
≥ E[1− P(Y = g∗(X) | X)] = P(Y ̸= g∗(X)) = E[1Y ̸=g∗(X)] = R(g∗)

since:
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�

∑K
k=1 P(f(X) = ak) = 1

� ∀k ∈ [K]: P(Y = g∗(X) | X) ≥ P(Y = ak | X).

The fact that R(f) ≥ R(g∗) for any decision function f exactly means that g∗ is the Bayes rule.

Let us then consider the following model for k = 3, p = 2 and given q ∈ [0, 1]:

P(Y = 1) =
q

2
; P(Y = 2) = 1− q and P(Y = 3) =

q

2
,

and the distribution of the continuous random vector X : Ω → R2 is defined followingly:

X|Y = 1 ∼ N ((0, 0), I2); X|Y = 2 ∼ Unif([0, 1]× [0, 1]) and X|Y = 3 ∼ N ((1, 1), I2),

Q2: Provide the Bayes rule for this model (and for the mis-classification loss).

Correction: The identity:

∀y ∈ {1, 2, 3} : P(Y = y|x) = p(X = x, Y = y)

pX(x)

allows us to express the Bayes rule as:

g∗(x) = arg max
a∈{1,2,3}

ra(x) with ∀x ∈ R2, a ∈ {1, 2, 3} : ra(x) = p(X = x, Y = y).

To be more precise, let us express thanks to the formula p(X = x, Y = y) = p(X = x|Y = y)P(Y = y):

� r1(x) =
q
4π e

−∥x∥2/2

� r2(x) = (1− q)1x∈[0,1]2

� r3(x) =
q
4π e

−∥x−1∥2/2.

Q3: Draw the decision boundaries for q = 1
2 .

Correction: from the formula given in previous question, one sees that when q = 1
2 :

� for x ∈ [0, 1]2 r1(x), r3(x) ≤ 1
8π ≤ 1

2 = r2(x)

� for x /∈ [0, 1]2, r2(x) = 0 and besides:

r1(x) ≥ r3(x) ⇐⇒ ∥x∥2 ≤ ∥x− 1∥2

⇐⇒ x21 + x22 ≤ x21 + x22 − 2x1 − 2x2 + 2 ⇐⇒ x1 + x2 ≤ 1

That gives us the following decision boundary:

Y = 2

Y = 3

Y = 1
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Q4: For which value of q the Bayes rule will only output 2 classes.

Correction: The Bayes rule strictly output 2 classes if and only if for all x ∈ R2: max(r1(x), r3(x)) ≥
r2(x). Given x ∈ [0, 1]2 :

max(r1(x), r3(x)) =
q

4π
exp

(
−1

2
min(∥x∥2, ∥x− 1∥2)

)
,

and besides, for x0 = (1, 0) (one could also take x0 = (0, 1)):

min(∥x∥2, ∥x− 1∥2) ≤ 1 = min(∥x0∥2, ∥x0 − 1∥2).

Thus

max(r1(x), r3(x)) ≥ r1(x0) = r3(x0) =
q

4π
e−1/2.

And since r2 is constant on [0, 1]2 and equal to 1− q, one can deduce that:(
∀x ∈ [0, 1]2 : r2(x) ≤ max(r1(x), r3(x))

)
⇐⇒ r2(x0) ≤ r1(x0)

⇐⇒ 1− q ≤ q

4π
e−1/2 ⇐⇒ q ≥ 1

1 + 1
4π e

−1/2
.
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