
Statistical learning - STA4042

Exercises sheet

Exercise 1: Multi-label Classification

Let us consider a discrete random variables Y : Ω → Y = {a1, . . . , aK} and a continuous random variable
X : Ω → X = Rd.

1. Recall that X has a density given by

pX(x) =

K∑
k=1

f(x, ak),

for some f : Rd × Y → R, measurable.

2. Show that the Bayes classifier is
g∗(x) ∈ argmax

a∈Y
f(x, a).

3. In the case of binary classification where K = 2 and a1 = 0, a2 = 1, find the Bayes classifier.

Correction

1. The question might be quite technical because X is a continuous random variable and Y is a discrete
random variable (to be fully rigorous, one should employ here Radon Nikodym theorem). Let us just
say that by definition of joint probabilities:

pX(x) =
∑
ak∈Y

p(X = x, Y = ak),

then we obtain the result denoting f(x, ak) ≡ p(X = x, Y = ak).

2. We only saw the binary class example in the course, let us first show that the Bayes rule for the
misclassification error l(z, y) = 1z ̸=y, writes:

f∗(x) = argmax
a∈Y

P (Y = a | X = x).

Given a decision function f : X → Y, let us compute:

R(f) = E[l(f(X), Y )] = E[1f(X )̸=Y ] = E[E[1f(X )̸=Y | X]] = E

[
K∑

k=1

E[1f(X)=ak
1Y ̸=ak

| X]

]

= E

[
K∑

k=1

E[1f(X)=ak
]E[1Y ̸=ak

| X]

]
= E

[
K∑

k=1

P(f(X) = ak) (1− P(Y = ak | X))

]

=

K∑
k=1

P(f(X) = ak)− E

[
K∑

k=1

1f(X)=ak
P(Y = ak | X)

]
≥ E[1− P(Y = f∗(X) | X)] = P(Y ̸= f∗(X)) = E[1Y ̸=f∗(X)] = R(f∗)

since:
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�

∑K
k=1 P(f(X) = ak) = 1

� ∀k ∈ [K]: P(Y = f∗(X) | X) ≥ P(Y = ak | X).

The fact that R(f) ≥ R(f∗) for any decision function f exactly means that f∗ is the Bayes rule. Now,
recalling that for any a ∈ Y and x ∈ Rd such that pX(x) > 0, we have

P (Y = a | X = x) =
f(x, a)

pX(x)
,

one can conclude that:

g∗(x) = argmax
a∈Y

f(x, a) = argmax
a∈Y

P (Y = a | X = x)pX(x) = argmax
a∈Y

P (Y = a | X = x) = f∗(x).

3. In the binary classification case if a1 = 0 and a2 = 1 we retrieve the Bayes rule given in the course:

g∗(x) = argmax
a∈{0,1}

f(x, a) = 1{f(x,1)>f(x,0)} = 1P(Y=1 |X=x)≥ 1
2
,

since P(Y = 1 |X = x) + P(Y = 0 |X = x) = 1 and therefore:

P(Y = 1 |X = x) ≥ 1

2
⇐⇒ P(Y = 0 |X = x) ≤ P(Y = 1 |X = x).

Exercise 2: Non symmetric classification

We consider the binary classification problem where Y ∼ B(p) and

X | Y = 0 ∼ U([0, 1/2]),
X | Y = 1 ∼ U([0, 1]).

1. Determine the cumulative distribution function (CDF) of X and its density pX .

2. For any x ∈ [0, 1], compute E[Y 1X≤x].

3. Show that, for any x ∈ [0, 1],

E[Y 1X≤x] =

∫ x

0

η∗(u)pX(u)du,

where η∗P (x) = EP [Y | X = x] is the regression function.

4. Determine the conditional law of Y given X = x and find the form of the Bayes classifier.

Correction

1. X is supported on [0, 1], so its CDF FX satisfies FX(x) = 0 if x < 0 and FX(x) = 1 if x > 1. For
x ∈ [0, 1]:

FX(x) = P(X ≤ x) = P(X ≤ x | Y = 0)P(Y = 0) + P(X ≤ x | Y = 1)P(Y = 1).

One can then compute:

� ∀x ∈ [0, 1]: P(X ≤ x | Y = 1) =
∫ x

0
du = x

� ∀x ∈ [0, 1
2 ]: P(X ≤ x | Y = 0) =

∫ x

0
2du = 2x and ∀x ∈ [ 12 , 1]: P(X ≤ x | Y = 0) = 1

Therefore:

� ∀x ∈ [0, 1
2 ]: FX(x) = 2x(1− p) + xp = (2− p)x
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� ∀x ∈ [ 12 , 1]: FX(x) = 1− p+ xp,

Putting everything together, one obtains:

FX(x) = (2− p)x1[0,1/2](x) + (1− p+ xp)1[1/2,1](x) and pX(x) = (2− p)1[0,1/2](x) + p1[1/2,1](x),

where the density pX is obtain from a simple differentiation of the cumulative distribution function.

2. The possible values for Y 1X≤x are 1 and 0, therefore:

E[Y 1X≤x] = P(Y 1X≤x = 1) = P(Y = 1, X ≤ x) = P(X ≤ x | Y = 1)P(Y = 1) = xp

3. E[Y 1X≤x] = E[E[Y 1X≤x | X]] = E[1X≤xE[Y | X]]

= E[1X≤xη
∗(X)] =

∫ x

0

1u≤xη
∗(u)pX(u)du =

∫ x

0

η∗(u)pX(u)du.

4. First note that:

η∗(x) = P(Y = 1 | X = x),

and the Bayes rule of binary classification then writes:

g∗(x) = 1η∗(x)>1/2.

Second, differentiating the two expressions of the mapping x 7→ E[Y 1X≤x] given in questions 2 and 3
provides the identity:

η∗(x)pX(x) = p.

Thus:

η∗(x) =


p

2− p
if x ∈ [0, 1/2]

1 if x ∈ [1/2, 1].

The Bayes classifier then expresses:

g∗(x) =

{
1 p

2−p>
1
2

if x ∈ [0, 1/2]

1 if x ∈ [1/2, 1].

Exercise 3: Least Squares, Ridge, and Lasso in Dimension 1

Given two random variables x : Ω → R and ε : Ω → R we consider the random variable:

y = β∗x+ ϵ (1)

for a given β∗ ∈ R that we will try to estimate. The goal of this exercise is to compare, given a data set
((x1, y1), . . . , (x1, y1)) ∈ (R2)n, the least squares estimator:

β̂(MC) ∈ argmin
β∈R

1

n

n∑
i=1

(yi − βxi)
2,

with the ridge estimator

β̂
(R)
λ ∈ argmin

β∈R

1

n

n∑
i=1

(yi − βxi)
2 + γ∥β(R)∥2,

and the Lasso estimator

β̂
(L)
λ ∈ argmin

β∈R

1

n

n∑
i=1

(yi − βxi)
2 + γ∥β(R)∥1.
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1. Write the expression of the least squares estimator β̂(MC) in terms of {(xi, yi), i = 1, . . . , n}. Compute
the bias and variance of this estimator.

2. Write the minimization problem that the ridge estimator must solve in this framework and compute
its bias, variance, and quadratic risk.

3. Give an expression for the point x∗ ∈ R where the minimum of the following function is reached:

f(x) = a|x|+ bx2 + cx, x ∈ R, with a, b > 0 and c ∈ R.

Show that:

x∗ = − c

2b

(
1− a

|c|

)
+

.

4. Compute the solution to the minimization problem for the Lasso estimator.

Correction

1. Let us denote X = (x1, . . . , xn) ∈ R1×n, Y = (y1, . . . , yn) ∈ Rn×1 and E = (ε1, . . . , εn) ∈ Rn×1 (X is
a row vector and Y,E are two column vectors). Since XXT = ∥X∥2 > 0, the objective function has a
unique minimum:

β̂(MC) = (XXT )−1XY =
XY

∥X∥2
.

One can then compute the expectation:

E[β̂(MC)] = E
[
X(XTβ∗ + E)

∥X∥2

]
= β∗

thus the bias is equal to zero.

Besides, the variance computes:

V[β̂(MC)] = V[β̂(MC) − β∗] = V
[
XE

∥X∥2

]
= E

[
XEETXT

∥X∥4

]
= σE

[
XXT

∥X∥4

]
= σE

[
1

∥X∥2

]

2. We have seen in the course that the Ridge regression admits a unique solution that writes:

β̂(R)
γ =

1

n

XY
1
n∥X∥2 + γ

=
XY

∥X∥2

(
1− γ

1
n∥X∥2 + γ

)
= β̂(MC)

(
1− γ

1
n∥X∥2 + γ

)
.

The expectation is:

E
[
β̂(R)
γ

]
= E

[
1

n

X(XTβ∗ + E)
1
n∥X∥2 + γ

]
= E

[
1

n

∥X∥2β∗

1
n∥X∥2 + γ

]
= −E

[
γ

1
n∥X∥2 + γ

]
β∗ + β∗

the bias thus expresses:

Bias(R) = −E
[

γ
1
n∥X∥2 + γ

]
β∗,

note in passing that E
[

β̂(MC)

1
n∥X∥2+γ

]
= E

[
1

1
n∥X∥2+γ

]
β∗ (although β̂(MC) and ∥X∥2 are two dependent

random variables). Let us recall the identity X(XT β∗+E)
1
n∥X∥2+γ

− β∗ = E−γβ∗

1
n∥X∥2+γ

, the independence between
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X and E, that E[E] = 0 and let us denote σ ≡ E[ϵ2i ] (then E[EET ] = σIn). The variance expresses:

V[β̂(R)
γ ] = V[β̂(R)

γ − β∗] = E

[( 1
nXE − γβ∗

1
n∥X∥2 + γ

)2
]
− γ2E

[
1

1
n∥X∥2 + γ

]2
β∗2

= β∗2E

[(
γ

1
n∥X∥2 + γ

)2
]
+

σ

n
E

[ 1
n∥X∥2

( 1n∥X∥2 + γ)2

]
− γ2E

[
1

1
n∥X∥2 + γ

]2
β∗2

= γ2β∗2E
[

1

( 1n∥X∥2 + γ)2

]
+

σ

n
E

[ 1
n∥X∥2

( 1n∥X∥2 + γ)2

]
− γ2E

[
1

1
n∥X∥2 + γ

]2
β∗2

(2)

The mean squared error (MSE) for the estimation of β∗ (in exercise 4, we will express the mean square
error for the estimation of Y ) is given by:

MSE(β̂(R)) = V[β̂(R)
γ ] + Bias(R)2 =

σ

n
E

[ 1
n∥X∥2

( 1n∥X∥2 + γ)2

]
+ γ2E

[
1

n2

∥X∥4

( 1n∥X∥2 + γ)2

]
β∗2

3. Note first that f is strictly convex as the sum of strictly convex functions. It has a left and right
derivative at every point (equal for x ̸= 0). Its subdifferential is: Note that f is differentiable on R∗

−
and R∗

+ and we have the expressions:

∀x > 0 : f ′(x) = {a+ 2bx+ c} and ∀x < 0 : f ′(x) = {−a+ 2bx+ c}.

If the minimum is reached on:

� x > 0, then a+ 2bx+ c = 0 and therefore:

x =
−a− c

2b
,

which implies in particular c < −a since x, b > 0.

� x < 0, then −a+ 2bx+ c = 0 and therefore:

x =
−a− c

2b
,

which implies in particular c > a since x, b < 0.

� x = 0, then ∀t > 0 : f ′(−t) ≤ 0 ≤ f ′(t), and one can let t tend to zero to obtain the inequality:

−a+ c ≤ 0 ≤ a+ c ⇐⇒ −a ≤ c ≤ a.

Thus, relying on the identity (recall that a > 0):

(
1− a

|c|

)
+

=


a+ c

c
if c < −a

c− a

c
if c > a

0 if − a ≤ c ≤ a,

which allows to retrieve the solution given in the question.

4. The Lasso estimator solves the minimization problem: The estimator minimizes the objective function:

f̃(β) = (Y −XTβ)⊤(Y −XTβ) + γ|β| = ∥Y ∥2 − 2XY β + ∥X∥2β2 + γ|β|.

This boils down to minimizing the mapping f introduced in question 3. with a = γ, b = ∥X∥2,
c = −2XY , plus a constant Y ⊤Y (irrelevant for optimization). Therefore, the solution is:

β̂ =
Y ⊤X

∥X∥2

(
1− γ

2|XY |

)
+

= β(MC)

(
1− γ

2|XY |

)
+

.
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Exercise 4: Properties of the Ridge Estimator

We consider here the same model (1) as in the previous exercice but this time X : Ω → Rd and β∗ ∈ Rd.
The Ridge estimator, given regularizing coefficient γ > 0, expresses:

β̂(R)
γ =

1

n
(X⊤X + γI)−1X⊤Y.

1. Show that the estimator:

β̂(R′) ≡ argmin
β∈Rd,∥β∥≤Mγ

(
n∑

i=1

(Yi −Xiβ)
2

)
,

with Mγ = 1
n∥QX⊤Y ∥ and Q ≡ (X⊤X + γI)−1 is equal to β̂(R).

2. Express the squared norm of the bias of β̂
(R)
γ in terms of the eigenvalues λ1, . . . , λd (with multiplicities)

of X⊤X:

B(R)
γ := ∥E[β̂(R)

γ ]− β∗∥2.

3. Express the variance:

V (R)
γ = E

[
∥β̂(R)

γ − E[β̂(R)
γ ]∥2

]
,

in terms of the noise variance σ2 and the eigenvalues λ1, . . . , λd.

Correction

1. Let us introduce the mapping f0 : β 7→
∑n

i=1(Yi − Xiβ)
2. The constrained problem ensures that

∥β(R′)∥ ≤ Mλ = ∥β(R)
γ ∥. Besides since β

(R)
γ satisfies the constraint, on also has the inequality

f0(β
(R′)) ≤ f0(β

(R)
γ ). Therefore:

f0(β
(R′)) + γ∥β(R′)∥2 ≤ f0(β

(R)
γ ) + γ∥β(R)

γ ∥2

By uniqueness of the solution of the Ridge regression problem, that implies that β(R′) = β(R).

2. We compute:

E[β̂(R)
γ ] =

1

n
E[QXY ] =

1

n
E[QX(XTβ∗ + E)] = β∗ − γE[Q]β∗.

Therefore Bias2γ = γ2β∗TE[Q]2β∗ and if we denote P , the orthogonal matrix that diagonalizes X⊤X

as P⊤X⊤XP = D, with D = diag(λ1, . . . , λd), one obtains the form:

Bias2γ = γ2β∗TE[P−1(D + γI)−1P ]2β∗,

which is not very helpful.

3. Let us compute:

Vγ [β
(R)
γ ] = Vγ [β

(R)
γ − β∗] = E

[∥∥∥∥−γQβ∗ +
1

n
QXE

∥∥∥∥2
]
−
∥∥∥∥E [−γQβ∗ +

1

n
QXE

]∥∥∥∥
= γ2β∗TE

[
Q2
]
β∗ +

σ

n2
E
[
Tr(XTQQX)

]
− Bias2γ

= γ2β∗T
(
E
[
Q2
]
− E [Q]

2
)
β∗ +

σ

n
E
[
Tr(Q− γQ2)

]
.

One can check that it is possible to retrieve (2) in the case p = 1 (then Q = 1
∥X∥2/n+γ ).
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Exercise 5: Square of the resolvent

This is a difficult problem (too difficult for a final exam exercise). Let us consider again the model (1):

y = xTβ∗ + ε,

with x : Ω → Rp, ε : Ω → R, two independent variables and β∗ ∈ Rp a deterministic vector.

1. Given a train data set X = ((x1, y1), . . . , (xn, yn)) and a test data (x, y), express the train MSE and the
test MSE for the estimation of Y with the Ridge regression as a function of X = (x1, . . . , xn) ∈ Rp×p,
x and β∗. For that, introduce the resolvent matrices Q ≡ (γIp+

1
nXXT )−1 and Q ≡ (γIn+

1
nX

TX)−1

2. We will now try to estimate E[Q2]. Recall from the course the notation:

∀i ∈ [n] : Λi ≡ 1− 1

n
xT
i Q−ixi

where Q−i = (γIp +
1
nX−iX

T
−i)

−1 and X−i = (x1, . . . , xi−1, 0, xi+1, . . . , xn) ∈ Mp,n and the identities:

Q = Q−i +
1

n

Q−ixix
T
i Q−i

Λi
and Qxi =

Q−ixi

Λi

We further introduced the deterministic matrix:

∀∆ ∈ R : Q̃∆ =

(
γIp +

Σ

∆

)−1

with Σ = E[xix
T
i ]

and the scalar Λ̃ ∈ R solution to:

Λ̃ =
1

n
Tr(ΣQ̃Λ̃),

To be able to set concentration results, we assume, as in the course that the matrix X has independent
columns and that it is a λ-Lipschitz transformation of a Gaussian vector Z ∼ N (0, Iq). Assuming
that p

n and ∥Σ∥ are both bounded with a certain constant independent of p, n, q, first bound without
justifications the following probabilities (employing some constants C, c > 0 independent with n, p, q):

� P
(∣∣∣Λi − Λ̃

∣∣∣ ≥ t
)

� P
(∣∣uTQ−ixi

∣∣ ≥ t
)

� P
(∣∣∣xT

i Q−iΣQ̃u
∣∣∣ ≥ t

)
� P

(∣∣ 1
nx

T
i Q−ixi − 1

nTr(E[Q−i]Σ)
∣∣ ≥ t

)
3. Given a deterministic vector u ∈ Rp and a deterministic matrix A ∈ Rp×p, such that ∥u∥ ≤ 1,

∥A∥ ≤ O(1), estimate:

uTQA(Q− Q̃Λ̃)u,

and deduce that:

E[uTQAQu] = uT Q̃Λ̃AQ̃Λ̃u− Tr(ΣQ̃AQ̃)

Λ̃2n
uTE[QΣQ]u+O

(
1√
n

)

4. Playing on the value of A, give an estimate of E[Q2] and E[QΣQ] and deduce an estimation of the
train and test MSE of the Ridge regression.
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Correction

1. Let us introduce β solution to the minimization problem:

β = argmin
β∈Rd

1

n

n∑
i=1

(Yi −Xiβ)
2 + γ∥β∥2

then β expresses:

β =
1

n
QXY,

and one can defined the train and the test MSE as:

MSEtr =
1

n
E
[
∥XTβ − Y ∥2

]
and MSEtst = E

[
∥xTβ − y∥2

]
,

where x is an independent copy of any column of X and y = xTβ∗ + ε as described by the model.
With the notations we introduced, recall that:

QX = XT Q̌ and
1

n
QXXT = Ip − γQ

With the notation E = (ε1, . . . , εn) ∈ Rn and η = E[ε2], one can then express as seen during the
course:

� MSEtr =
γ2

n
E
[
Y T Q̌2Y

]
=

γ2

n
E
[
β∗XQ̌2XTβ

]
+

γ2

n
E
[
Tr(ET Q̌2E)

]
= β∗TE

[
Q− γ2Q2

]
β +

γ2η

n
Tr(E[Q̌2])

� MSEtst = E

[(
1

n
xTQX(XTβ∗ + E)− xTβ∗ − ε

)2
]

= E
[(
xT (Ip − γQ)β∗ − xTβ∗)2]+ E

[(
1

n
xTQXE

)2
]
+ E

[
ε2
]

= E
[(
xT (Ip − γQ)β∗ − xTβ∗)2]+ η

n2
Tr
(
E
[
QXXTQ

]
Σ
)
+ η

= γ2E
[
β∗TQΣQβ∗]+ η

n
Tr
(
E
[
Q2 − γQ

]
Σ
)
+ η

2. We can bound from the course:

� P
(∣∣∣Λi − Λ̃

∣∣∣ ≥ t
)
≤ Ce−c

√
nt

� P
(∣∣uTQ−ixi

∣∣ ≥ t
)
≤ Ce−ct

� P
(∣∣∣xT

i Q−iΣQ̃u
∣∣∣ ≥ t

)
≤ Ce−ct

� P
(∣∣ 1

nx
T
i Q−ixi − 1

nTr(E[Q−i]Σ)
∣∣ ≥ t

)
≤ Ce−cnt2 + Ce−ct.

3. Now, employing as in the course the identities:

Qxi =
Q−ixi

Λi
and Q = Q−i +

Q−ixix
T
i Q−i

Λi
.
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and the resolvent identity, one can estimate:

E
[
uTQA

(
Q− Q̃Λ̃

)
u
]
=

1

n

n∑
i=1

E
[
uTQAQ̃Λ̃

(
Σ

Λ̃
− xix

T
i

)
Qu

]

=
1

n

n∑
i=1

E

[
uTQAQ̃Λ̃ΣQu

Λ̃

]
− 1

n

n∑
i=1

E

[
uTQAQ̃Λ̃xix

T
i Q−iu

Λ

]

=
1

n

n∑
i=1

E

[
uTQ−iAQ̃Λ̃ΣQ−iu

Λ̃

]
− 1

n

n∑
i=1

E

[
uTQ−iAQ̃Λ̃xix

T
i Q−iu

Λ̃

]

− 1

n2

n∑
i=1

E

[
uTQ−ixix

T
i Q−iAQ̃

Λ̃xix
T
i Q−iu

Λ̃Λi

]
+O

(
κz√
n

)

where we replaced a Λi with Λ̃ and added a small error of order O(1/
√
n) since we know that Λi is

almost constant as pictured in the previous question. The independence between xi and Q−i provides:

E

[
uTQ−iAQ̃Λ̃ΣQ−iu

Λ̃

]
= E

[
uTQ−iAQ̃Λ̃xix

T
i Q−iu

Λ̃

]
.

Besides, the same concentration as the one of Λi happens for
1
nx

T
i Q−iAQ̃Λ̃xi that we can replace with

1
nTr(ΣQ̃

Λ̃AQ̃Λ̃) which finally leads to:

E
[
uTQA

(
Q− Q̃Λ̃

)
u
]
= − 1

n

n∑
i=1

E
[
uTQ−ixix

T
i Q−iu

Λ̃Λi

]
1

n
Tr(ΣQ̃Λ̃AQ̃Λ̃) +O

(
κz√
n

)
= − 1

n
Tr(ΣQ̃Λ̃AQ̃Λ̃)

uTE[QΣQ]u

Λ̃2
+O

(
κz√
n

)
,

which is exactly the looked for result.

4. Taking A = Σ in the above result provides:

uTE[QΣQ]u = uT Q̃Λ̃ΣQ̃Λ̃u− Tr(ΣQ̃ΣQ̃)

Λ̃2
uTE[QΣQ]u+O

(
1√
n

)
,

and therefore:

uTE[QΣQ]u =
uT Q̃Λ̃ΣQ̃Λ̃u

1 + 1
Λ̃2n

Tr(ΣQ̃ΣQ̃)

one can then inject this new value in the initial estimate to finally obtain for any deterministic matrix
A ∈ Rp×p:

E[uTQAQu] = uT Q̃Λ̃AQ̃Λ̃u− Tr(ΣQ̃AQ̃)
uT Q̃Λ̃ΣQ̃Λ̃u

Λ̃2n+Tr(ΣQ̃ΣQ̃)
+O

(
1√
n

)
Most of the terms appearing in the mean square error formula can now be estimated, one is just left
to estimating 1

nE[Tr(Q̌)]. Note first that one can use the formula:

Q̌ =
1

γ
(γQ̌− In) + In = γIn − 1

nγ
Q̌XTX = γIn − 1

nγ
XTQX

and noting that:

1

n
E
[
Tr(XTQX)

]
=

1

n

n∑
i=1

E
[
xT
i Qxi

]
=

1

n

n∑
i=1

E
[
xT
i Q−ixi

Λi

]
=

1

nΛ̃
Tr(ΣQ̃Λ̃),
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one can finally estimate:

1

n
E[Tr(Q̌2)] = E

[
Tr(γIn − 1

nγ
XTQX)2

]
= γ2 +

2

n2γ
E
[
Tr(XTQX)

]
+

1

n2γ2
E
[
Tr(XTQXXTQX)

]
= γ2 +

2

n2γΛ̃
Tr(ΣQ̃Λ̃) +

1

n2γ2
E
[
Tr(XTQ2X)

]
= γ2 +

2

nγΛ̃
Tr(ΣQ̃Λ̃) +

1

nγ2Λ̃
Tr(ΣE

[
Q2
]
).

One then has all the elements to compute the train and test Mean square error as they are expressed
in Question 2.
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