Lecture 8 : High dimensional
Statistics

In this lecture, we will present some phenomenon that appear in high dimensional regimes. In modern
Machine learning, one often has to cope with two asymptotics: high number of data and high dimension
of the data. That leads to sometimes counter intuitive behavior, that are classically regrouped under the
term “curse of dimensionality”. To be able to rigorously set theoretical results in this kind of regime, two
probabilistic theories have been intensively developed in the last 50 years: the concentration of the measure
theory and the random matrix theory. We will provide in this lecture first elementary results of these theories
and deduce insights on simple Statistical learning procedure like Kernel clustering and Ridge regression.

1 Concentration of the measure tools

1.1 Concentration in high dimension

The concentration of the measure theory is only relevant in high dimension where as Talagrand noted in
B]: “A random variable that depends (in a “smooth” way) on the influence of many independent variable
(but not too much on any of them) is essentially constant”. In this sentence the whole question is to know
what “smooth” means. The smoothness of a mapping can be first described as a Lipschitz property that we
describe below.

Definition 14. Given a mapping f : RP — R? and a parameter A > 0, we say that f is A\-Lipschitz iif:

Va,y € RP: 1 (x) = FWll < Mz = yl].

The simplest idea of concentration of the measure is then, given a high-dimensional random vector
X € RP, to understand the concentration of X through the behavior the real random variables f(X) for
f:RP — R, 1-Lipschitz. For X Gaussian, one can for instance set the following result.

Theorem 8.40 (Concentration of Gaussian vector[2]). Given a deterministic vector u € R? and a Gaussian
vector Z ~ N (p, I,), for any 1-Lipschitz mapping f : R? — R:

P(|f(Z) ~E[f(2)]| > t) < 2¢7/2 (8.8)

Notably, the result of the theorem does not let appear the dimension p. The proof that led to the
constants 2 is quite elaborate, we will thus refer the interested reader to the book of Ledoux [2]. Let us
apply this result on simple mappings f.

Example 8.41. Let us consider Z ~ N (0, 1,) and apply Theorem to the mappings:

1 frz=(21,...,%)— % b = %, introducing the deterministic vector 1 = (1,...,1) € RP. We

can bound for any x,y € RP:

[l — Il

I
If(%)—f(y)IZ*pf]l (z—y)| < 7

7

<z =yl
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thanks to Cauchy-Shwarz inequality. Therefore, one can bound:
P
'Sz

1
]:ED (
i=1

pP— 00

p

>t> =P (|f(2) —E[f(2)]] > V/pt) < 277°/* — 0,

it implies the law of large numbers for Gaussian vectors. The same result would have happened for
projections on any deterministic vector u € RP | that is why we say that Gaussian vectors concentrate
around any equator {z € RP : ulz = 0}.

2. frzm 2.
P (| Z] - E[IZ]]| > t) < 2¢7*/*

And recalling that E[|| Z||] is of order \/p, one can then understand the behavior represented on Fig-
ure .' a Gaussian vector Z ~ N (u, I,) of high dimension concentrates around the sphere \/]T)Sp*l.

The Gaussian example allows us to set similar concentration result for a wide range of random vectors
since the class of “concentrated vectors” is stable through Lipschitz mappings.

Corollary 8.42. Given a random vector X : Q — RP, if there exists a random vector Z ~ N(0,1,) and
a A-Lipschitz transformation ® : R? — RP, for a parameter A > 0, then for any 1-Lipschitz real-valued
mapping f : RP — R:

P(1f(X) = ELf(X)]] 2 1) < 2"V, (8.9)
Proof. Given a 1-Lipschitz mapping f : R? — R, let us bound:

P([f(X) - E[f(X)]] = 1) <P(|f(®(2)) - E[f(2(2))]| 2 1)

<2 (|brem & [e@)||= 1) <2

since the mapping  f o @ is 1-Lipschitz. 0O

Although the variations are bounded, Lipschitz transformation of a Gaussian vector ®(Z) can allow
complex dependencies between the entries.

This last corollary becomes particularly inspiring when considering the example of GAN images that
are typically constructed as the image of a Gaussian vector through Lipschitz mappings. Therefore, by
construction, their observations f(X) follow the same concentration inequality as in (the whole question
is to compute the Lipschitz parameter of the generator, A). Looking at the examples of fake images produced
with GANs, one can understand why the concentration result given by Corollary can be taken as a
standard hypothesis in theoretical machine learning.

A question that naturally raises is then “Can we express the concentration of non Lipschitz functionals?”
The answer is yes, there are many ways, however they are outside the scope of this course. In next section
we present some key lemmas to deal with concentration inequalities on random variables.

1.2 Concentration of real observations

Theorem [8.40] and Corollary allows to construct a wide range of concentration inequalities on random
variables. We see in this section what conclusion can be made from those concentration inequalities. Let us
start with two fundamental inequalities of Probability theory that allows to go from concentration inequalities
to bounds on moments and vice-versa:

Lemma 8.43. Given a positive continuous random wvariable Z : 0 — R, and an increasing mapping
¢ : Ry — Ry such that E[¢(Z)] < oco:

B(Z > 1) < H0Z)] and Blo(2) < | Po(2)= i
0
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Gaussian input

Figure 8.7: (Top) Schematic view of a GAN: the generator provides images that are concentrated by

construction, Discriminator assert if the image is fake or real. (Down) Example of fake images created with
GANS.

Proof. The first result is the classical Markov inequality, the second result is proven with Fubini theorem
(to swap integral signs) and using the identity ¢(z) = fR+ Ljo,(z) (t)dt =:

Bo2)] = [ o@E) = [ [ oo = [ [ tpewen= [ po@ =g
since, for all z,¢t € Ry

Ljo,(2)(t) = 1 = Tt 400) (9(2)) = 1.
O

With this Lemma, one can then bound all the moments of an exponentially concentratecﬂ random
variables.

Lemma 8.44. Given a random variable Z : Q — R such that P(|Z| > t) < 2e=/"" for ¢ > 0, then for any
r > 0, there exists a constant C > 0 independent with n such that:

EllZ]"] < Cn"

Here we just track the dependence on 7, this that is the only term that will contain some dimensional
components as we will see in some examples (we have already seen it in Example Ttem 1.)

Proof. From Lemma [8.43] one can deduce (with the change of variables t'/" — u and u/n — v):

B2l = [ B2l > 0= [ 212 ¢t = [ (2] > e

Ry

< 2/ ru” e (WM gt = 2rnT/ o le TV dr < Oy
Ry R

O

4 An exponentially concentrated random variable is a random variable that follows a concentration inequality similar to the
one on f(X) in (8.8) with an exponential dependence on ¢ on the right hand term.
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Proposition 8.45. Given two random variables X,Y : Q — R and four parameters a,b, 0,0 such that:
P(|X —a| > t) < 2t/ and P(|Y — b > t) < 2e~t/0°
one can express the concentration of the product XY around ab followingly:
P(|XY —ab| > t) < 46—(75/3rnaX(@lalvfflbD)2 + 4€—t/3maX(02~,92)

Proof. The proof relies on the implication, true for any z,y, z,t > 0:

t
or zzg. and zy>t = x>Vt or yZ\/i.
Then, the algebraic identity xy — ab = (z — a)(y — b) + a(y — b) + b(x — a) leads to:

rT+y+z2t = x>

W =+

or y=>

W =+

P(IXY —ab| > t) < P(IX —al[Y = b +|X — al[o| + |V — blla| > ¢)

§P<|Xa|2\/§>+P<|YbZ\/§>

t t
+]P’<X—a||b|>3>+]P’<|Y—b||a|>3>.
O

If « = E[X] and b = E[Y] then Proposition sets that XY concentrates around E[X]E[Y] one can then
wonder how expresses the concentration around E[XY]. That question is solved by the two next lemmas.

Lemma 8.46. Given a random variable X : Q2 — R and a deterministic scalar a € R, such that:
P(|X —a| > t) < 2e”@/7,
if there exists a scalar b € R and a constant C > 0, independent of 1 such that: |a — b| < Cn then:
P(|X — b > ) < C'e” /207,
for some constant C' independent with 7.

One can employ this lemma in the case b = E[X] since one knows from Lemma that there exists a
constant C' > 0 independent of n such that:

la— E[X]| < [E[a — X]| < E[|X —af] < Cn. (8.10)
Proof. Let us start with the bound
|X —E[X]| < |X —a| +[a - E[X]|

and:

2
P(X ~E[X]| > 1) < P(X ~a| > 1~ o~ EIX]) < 2exp <_ (=) ) |

One can then note that if ¢ > 2C, then: % =t—+ < t—Cn and therefore (since u — e=(/m? g decreasing):

13
2

2 exp (- (t UCT’)2> < 92¢(35)°)

if t < 2Cn, one can still bound % < Cn and therefore:

(52"

n P TAY

P(IX ~E[X]|2) 1= < e (=)

One then retrieve the second result of the lemma setting ¢’ = max (2, 602). O
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This last lemma allows us to prove a weak version the famous Hanson-Wright concentration inequality,
very important in random matrix theory.

Corollary 8.47 (Hanson-Wright). Given a deterministic symmetric positive matrmﬂ A € RP*P random
vectors Y : Q@ — RP such that X = ®(Z) with Z ~ N(0,1,) and ® : R? — RP, \-Lipschitz:

1 ct 2 1 ct
P(|XTAY —E[XTAY]|>t) < Cexp | —= <) + Cex <( )>
( | =) < p( 2 \ Al Ally/po P72 g

where o > 0 is a parameter that satisfies o = max(\/%E[XTX], \/%]E[YTY]) and C,c > 0 are two constants

independent of \, 0.

Note that if X ~ N(0,1,), o = , /]%]E[XTX] =1

Proof. One can express:
XTAX = |A2 X

Knowing that:

1 1 1 t 2
P (11143 X ~E[JA3X]]] > 1) < 2exp (—2 (”A”%A) ) ,

one can use Proposition to set:

P (|XTAX —E[||ALX|?)| > 1) < dexp (—; (w Aé|£[|| A5X||]>2> T dexp (—; (W)) e

Besides, thanks to Jensen inequality:

E[||A* X|] = ENVXTAX] < /E[XTAX] < /p|[Allo.

Finally, to replace “E[|[|Az X ||2]” with “E[XT AX]” in (8.11), one can employ Lemma and (8.10). O

Remark 8.48. One can obtain a similar concentration result for the concentration of XTAY where Y :
Q — RP is a supplementary random vector such that (X,Y) = V(Z) with Z ~ N(0,1,) and ¥ : R? — R?P,
A-Lipschitz. It just comes from the fact that:

1
XTAY = 1 (X+Y)TAX +Y) - (X —-Y)AX -Y))
and that X +Y and X —Y are both 2\-transformation of Z ~ N(0,1,) under those hypotheses. One can
then employ Corollary[8.47 to express the concentration of XTAX.

Example 8.49 (Spectral clustering intuition). In spectral clustering the setting is generally unsupervised
(noY') and one wants to study the eigenvalues of the matriz:

K= (K(l'ivxj))i,jG[n] ’

where K : RP x RP — R is a kernel matriz whose entry K(x;,x;) should represent the similarity between x;
and x;. If the kernel writes:

1
K(wiz)) = f (pna:z- - w) ,

5Modifying a bit the concentration constants, the result is actually true for general matrices A € RP*P,
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vo = [ O bk ] 2= [ i ]

Figure 8.8: Gray scale view of heat Kernel matrices and the second top eigenvectors vy for small (left, p =
5, n = 500) and large (right, p = 250, n = 500) dimensional data. (Down). The data random vectors
belong to two balanced classes C; : x ~ N (u, Ip) and Cy : & ~ N (—u, Ip) where pp = (1,0,...,0).

for a certain mapping f : Ry — Ry (that would be f : ¢t — et for the heat Kernel). The concentration
of the measure theory then asserts that the similarity “||z; — x;||*” will concentrates around its expectation,
that is actually constant intra and interclass when the dimension increases. Considering two data x;,x; and
denoting p;, p; their expectations, one can estimate:

1 2 _ 1 2 2 T 1 2 1 2 2.7
=@ — x| = =i — 5|7+ = (s — p5)" (2 — 25) + =lzl|” + =217 + =% %4 8.12
ol ilm =7l il + 2 i)z = z) + Dl I e (8.12)
We know that:
T 27
Bl = )" (2 = )] =B | 22| =0,
and we can assume that as for Gaussian vectors, Yi € [n]:
1
B |Slal] -1
p
Then Corollary (847 allows us to set that:

) P(i (i — )T (25 — 25)| = t) < 2exp (_ (_pt_)2>

i elnl iz gs P ([20s] 2 0) < aew (<4 (F)7) +aew (-3 (5)).

bS]

vic e (|20 <tew (< (F)) e (1 ()

In difficult settings of binary classification where p; either equals +p or —p and ||pl| <p—oo O(1), %Hlli —
will < O(%) and (8.12)) can be approximated (thanks to concentration of the measures inferences):

1 1 1 2 1
—IIx‘—m'IIQ%—IZ-|2+—||z'||2+‘Z‘TZ'+O<_>'
p p o p p p

Therefore, the the intuition of low dimensional spectral clustering does not work anymore in high dimension
as pictured on Figure [8.8, all the entries of K look the same iner and intraclass. One needs to resort to
random matrix Theory to get precise insights on the performances of such methods.
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2 Random matrix Theory

In linear algebra, the set of matrices is generally denoted M, ,, = RP*", we will therefore let appear those
two notations in the sequel. The set of square matrices of size p is denoted M, = RP*P. The euclidean
norm on R? is denoted || - || (|z|| = v/>_,_, z7), then the Hilbert-Schmidt norm (or Frobenus norm) is
denoted || - [[p (VM € Myt [|M|p = /Tr(MM*) = supj 4, <1 |Tr(AM)]|), the spectral norm is denoted
-1 (1M = supjjzy=y [[M2]).

2.1 Random matrix theory in machine learning

Random matrices naturally arise in machine learning since one often has to consider data matrices X =
(z1,...,2n) € RP*™ (one could imagine the z1,...,z, as being independent samples of a distribution of
images, time series, features, or any other measurements). This matrix, as it contains all the information
about the available data will appear explicitly or implicitly in the computations when one tries to prove
theoretical guarantees to a given method.

Example 8.50 (Ridge regression). Given a training data set {(x1,y1),.. -, (Tn,yn)} with (x1,...,2,) €
RP*"™ and Y = (y1,...,yn) € R", the Ridge regression problem is a linear method that looks for a parameter
B € RP such that the projection fs(x;) = BT x; is close to y; for alli. The loss one wants to minimize is the
MSE:

1(fa(@),y) = 18" — ylI?,

but in Ridge regression, one adds a regularizing term |||, with v > 0 to avoid over-fitting. Then the
Ridge-regression problem expresses:

Ls(X,Y
min s(X,Y).
where:
1 & 1
LaX.Y) = & 32T = #2817 = L IXT8 - YIP 2317

The solution can be computed cancelling the gradient:

dLs(X,Y)
op

Therefore, denoting Q = (vI, + %XXT)_I, one obtains:

1 1 1 1
=0 <= —XXTB——-XY+y8=0 < (7Ip+XXT>B:XY
n n n n

5=Lqxv,
n

we see appearing the so-called “sample covariance matriz” %XXT that we will study later. Then the Mean
square error (the MSE) on the training data set write:

2
MSE=|xT8 -]’ = H;XTQXY -Y

Let us then note that (it is trivial for square invertible matrices, it can be extended to rectangular matrices):

1 1. /1 -t 1 1 ! .

~XTQxT = -Xx (XXT + ﬂp> XT=-Xx'X (XTX + w,,) =1, —Q, (8.13)
n n n n n

where we introduced Q = (%XTX + 7],,)_1, the so-called “co-resolvent”. One can then set:

MSE, = | XT8-Y|" = L= 2YTQY. (8.14)
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We see here that the performances express with the resolvant Q. One could be tempted to approzimate:

-1
Q~ (ﬂ,) + %E[XTXD ,

but that is wrong for big values of p. To have an exact estimation of this matriz, one needs to resort to
random matriz result whose the resolvent, and the co-resolvent are central object. We see here that already

with a very simple object, random matrix theory seems indispensable.

2.2 Assumptions and first properties of the resolvent

In all this section, we will consider a random matrix X = (z1,...,2,) : Q@ — RP*™ To simplify the calculus,
we will assume that all the columns z; : Q@ — RP, ¢ = 1,...,n are identically distributed and denote:
pw=E[z]) =-- =Elz,] and Y =Elzlz)]) = =Elzlz,]

and assume the following assumptions:
(A1) z,...,x, are independent

(A2) X =¢(Z) with Z ~ N (0, I,) for a given ¢ € N and ® : R? — RP 1-Lipschitz.

(A3) [lull <1

To stay as simple as possible, given a parameter v > 0, we will just study the resolventﬂ
1 -
Q=Q0) = (v, +  XXT)™!

which is a random matrix as %X XT.

| | I
I Empirical eigenvalues of C

4 Maréenko-Pastur law L

= Population eigenvalue

I 1 N
( N

2 N

Density

E +
0.8 1 1.2

Figure 8.9: Histogram of the eigenvalues of the empirical covariance matrix %X X7, Marcenko-Pastur dis-
tribution that approximates the spectral distribution u = 1—1) Zvd 1xXT ., and eigenvalues of the population
covariance matrix E[2XXT] = I,; 6;. X = (z1,...,2,) € RP*" with x1,...,2, € R? independent and
satisfy Vi € [n] : z; ~ N(0, I,), p = 500, n = 50000.

6Looking at example [8.50L one might be more likely to work with @, but the study of @ is slightly more elaborate and
anyway, the two resolvent satisfy the relation (8.13)), that allows to go from one to the other easily.
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Remark 8.51. A famous result of complex analysis (that we will not detail here) ensures that if one is
able to estimate Q(v) for all v € C, with S(v) > 0, then one is able to estimate the spectrum of ~X X7
(which is a random object like %XXT and concentrates around a certain distribution). This was the first
motivation of random matrices, but we saw in that the resolvent can actually appear in statistical
learning independently of spectral inferences. We will thus study directly and strictly Q in the following, that
will though still provide a flavor of random matriz calculus.

Since we are working in the quasi-asymptotic regime where p and n are big, we allow ourselves to
introduce two general notations “C,¢” or “O(1)” to denote the constants that are independent with p, n.
These universal constants C| ¢ could be any positive real value that should stay the same in any setting with
a different p and n. We then add our last assumption that will allow to simplify the result:

(A4) p<O(n)
All the following results will be valid under the assumptions (Al — 4), for simplicity, we will not mention
those assumptions in the sequel.

Let us start with some important lemmas to control ||X||, ||Q| and the concentration of Q.
Let us first show some important properties

Lemma 8.52. There exists a constant C, independent with p,n such that:
ISl <c
Proof. One knows that for any deterministic vector u € RP and any i € [n]:
P (Ju” (2 — ps)| > t) < 2 .
which implies from Lemma that:
E [u” (zi — pi)(xi — i) u] = E [Ju” (2 — )] < C.
Noting that E [u” (z; — p:) (s — pi)Tu] = E [uT 2zl u] — (u” ps)? = w”' (S — p”' 1)u, one can finally bound:

1] = sup v'Su < sup u? (X — pul)u+ (u?'p)* < C,
flull<1 llull<1

for some constant C' > 0 independent with p, n, since we know from assumption (A3) that ||u|| < C. O
Lemma 8.53. ||Q] < % and 1| XQ| < ,/% (recall that v > 0).

Proof. The proof relies on the fact that @ (and Q~!) are positive symmetric matrices. One can then bound
with the traditional order relatiorEI on the set of positive symmetric matrices:

1
Q' =~ + -XXT >~I,.
p
That implies:
11
Q= (p) =<1
v
The second bound come from the identity:

1 1 11
QEXXT == (ﬂP + nXXT) EXXT =1,-Q (8.15)

"TA<B & VzeRP: 2T (B— Az >0.
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Noting that for any A € RP*P:

|A|l= sup ulAv< sup VuTAATuwTv = /|| AAT|,

lullsllvll <1 llulllvll<1

thanks to the Cauchy-Shwarz inequality, one can bound thanks to (8.15)):

1 1 1 1 1 2
lox| < =/ [Fexxrq| < ZvieT@T < ZvIRT @< /= (510

O

Proposition 8.54. For any mapping f : RP*P — R, 1-Lipschitz for the Frobenus norm on RP*P, there exist
some constants ¢ > 0, independent of p,n such that:

P(1£(Q) — E[f(Q)]] > t) < 2e7"".

Proof. Introducing the mapping ® : M,,,, = M, defined as:

a(M) = («ﬂwMMT)_l,

it is sufficient to show that ® is O(1/+/n)-Lipschitz (for the Hilbert-Schmidt norm). For any M € M,, ,, and

any H € M, ,, we can bound:
2
<2\ —|H|r
F ny

thanks to Lemma O

n

Hdcb‘M : HHF = Hcp (M) L HT + BEMTYS (M)

Now that we know that Q is concentrated, the next step is to find a deterministic matrix Q € RP*? such
that:

~ 1
E[Q] — <0O|—].
50l - @l < 0 (-
Such a matrix is commonly called in random matrix literature a “deterministic equivalent” of Q.

2.3 Deterministic equivalent of the resolvent

To choose a deterministic equivalent equal to (yI, + X)~! (where £ = 1E[XXT] = E[z;2]] for all i € [n])
would be too naive and indeed does not work. An efficient approach is to look for a deterministic equivalent
of ) depending on a deterministic parameter A € R that we will provide later and having the form:

- v\ !
Q% = (VIP + A) (8.17)
One can then express the difference with the expectation E [@Q] followingly:
AA 1 T A /A ¢ T_ %\ Aa
EQ-Q*=E|Q(=-XX"-3%)Q% == E|Q(wza] - T)Q%|.
n n A

To pursue the estimation of the expectation, one needs to control the dependence between ) and x;. For
that purpose, one uses classically the Schur identities.

aTO_ .
Lemma 8.55. Q = Q_; + %% and Qx; = % where Q_; = (yI, + +X_;XT)™" and
X—i = (1‘1, . ,11_1707562‘4_1, e ,l’n) (S MPJL
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Proof. The so called “resolvent identity”:
A (B-A)B'=a"1-p! (8.18)
applied to A = Q! and B = Q:} gives:

Q-Q.=Q (1X_ixi- - 1XXT> Q= —Qu iaT,Q s (.19)
n n n

Therefore multiplying on the right with z_;, one gets:

1 T
= O s — = _xt Qg
sz Q iLq an iL Q i,

thus:
Q-iw;
Ti=—T 7
? 1+ %.%TlQ_le
and one deduces easily the first result of the lemma from (8.19)). O

Let us then pursue the computations with the new notation:
. 1 r
Vi € [n]: AN=1——2; Q_x;
n

In particular the results of Lemma [8.55| rewrite:

L g & .
Qu; = F=iT and Q=q 4 9=t Qi (8.20)
A; A;
Recalling that Q@ — Q_; = %Qxix;er,h it is then possible to express:
~ 1 & el X\ = 1 & ¥~
E DA — E i ek A2 A - E g “1 AA
S B e Y Cal R W [CRRE S
(8.21)
From this decomposition, one is enticed into choosing in a first step for A the value:
A=E[A] eR.
Since 1, . . ., x, are identically distributed, A4, ..., A, are also identically distributed (but not independent!)
One can then bound for any u € RP:
-4 1< 1<
T _AhY, L 4o .
u (]E[Q] 8, )u SO IUEED P (8.22)
=1 i=1
with:

_ AA 1 1
o g;=E [UTQ_Z'Q%:L'ZTQ U (E - X)}
o 5 =E [uT(Q i — Q%QM]
To bound those two quantities, one will use the following lemmas:

Lemma 8.56. }P’(|uTQ_izi| >t) < Ce=*" and P (‘UQAJTZ'
independent with n,p.

> t) < Cefdz, for some constants C,c > 0
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Proof. Let us only show the concentration of u”Q_;x; since it is more difficult than the concentration of
uT QM x;. Noting that E[u?Q_;z;| X _;] = vTQ_;p and E[u’ Q_;x;] = Eu”Q_;u], one can bound with the
formula given by Lemma
P ("LLTQ,Z‘.Ti — E[UTQ,i.Z‘iH > t)
S E DP) (|UTQ_iIi - E[UTQ_z.I,L‘X_Z]| Z t|X_,L)] + P (|’UJTQ_ZIU - E[UTQ_ZILLH Z t)
<E {C/e—c(t/ncz_inﬁ} L etV < et

thanks to the hypothesis on the concentration of z;, the bound on ||@Q_;| given in Lemma and Propo-
sition One can besides bound thanks to Jensen inequality:

One can then apply Lemma with @ = 0 and b = E[u’ Q_;2;] to conclude. O

Lemma 8.57. P(|A; —E[A;]] > ¢t) < Ce=ct/VM* L Ce=ct/n | for some constants C,c > 0 independent with
n.

Proof. Recalling that A; =1+ %leﬂxl and noting that E[A;|X;] =1+ %Tr(EQ,i), let us simply bound
as in the proof of Lemma [8.56

P (A —E[A]] > ¢)
<SEP(JA; — E[A] X ]| > ¢ X)) + P (JE[A| X -] — E[A;]] >
+ P

1 1

<E {P (‘xiQ—ixi —-E [ﬂﬁiQ—ixi|X—i] > t|X—i):| (
n n

<E {Cefcwﬁnc?_in)? 4 Oefct/nucg_iu] 1 Ce—cltyB/n'/?)?

t)
o) -E LlLTr(EQ_i)] ’ > t)

n

< Cfe—c/(t/\/ﬁ)2 + Ce—c/t/n

thanks to Corollary |8.47| to bound the concentration of %le,le and Proposition m to bound the con-

centration of ~Tr(XQ_;) (the mapping M — ITr(XM) is %—Lipschitz for the Frobenus norm and
IZ]F < O(y/p)- O

Lemma 8.58. [A| = |1+ 22TQ_;z;| > 1.
Lemma 8.59. |E[Q_;] — E[Q]|| <O (2).

Proof. We know from (8.20]) that Q_; — Q = ﬁQ_i:ciziTQ_i. One can then use Lemma to bound for
any deterministic vector u € RP:

|uT(E[Q_i] —E[Q])u| < % |E [uTQ_ia:ixiTQ_iuH = % |IE [uTQ_iEiQ_iuH <0 (1) )

n

One can then directly conclude since for symmetric matrices like Q@ — Q_;:

IEIQ ] — E[Q)| = sup [uTE[Q — Q_iJu] < O (1) |

u€ERP n

One now has all the elements to prove:
Proposition 8.60. ||E[Q] — Q| <O (ﬁ)
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Figure 8.10: Test MSE and Train MSE of the Ridge regression as a function of v for X = (W Z) for some
Gaussian matrix W € M,, , and Z € M, ,, containing in columns MNIST digits (¢ = 784 is the number of
pixels) for different activation functions o. Figure taken from [I]

Proof. Let us simply bound ¢; and §; appearing in (8.22)). One can show directly from Lemma that:
~A 1
o < 121Q) - Bl 1= <0 ().

Then, one can use Holder inequalityﬁ to set:

1

il < (Ellu" Qiail*))* (Ella] @ uf’])

Wl
Wl

(E1a - A1) < 0()-0(1) -0 (

1
vn)’
thanks to Lemma [8.44] O

The issue with last proposition is that Q[\ still depends on A=1+ ]E[%J:ZTQ,Z%] that we do not know
how to compute. This problem is solved thanks to the following heuristic (that can be rigorously justified
but that lies outside the scope of this course):

1 1 ~A
A=1+ -"Tr(ZE[Q_ i) ~ 1 + —Tr(2Q"),
n n
then introducing A € R as the only solution to:
1 AA
A=1+-Tr(2Q"), AEeR,
n
one can show that:

IA— Al <O(1/Vn) (8.23)

The resolvent identity (8.18) provides the bound:

/}\_1‘ 050" < e a2 <o< L )

ot -] - £ -4 g o (1

8Holder inequality sets that for any random variables X,Y,Z : Q — R:

ELXYZ)| < (EIXP)? E[YP])F (E[Z[)?
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Thanks to Lemmas [8.52] |8.53 and [8.58 and (8.23]). Consequently Proposition finally gives us:

_AA  AA A AA 1
IEQ] -GN < |EIQ] - QM|+ 0 - & ||<o< \/ﬁ>

Unlike QA, Qi‘ can be numerically computed if one knows X, therefore that gives us a precise estimate of E[Q)
and subsequently of the MSE of the Ridge regression given in Exercise [8.50} This deterministic equivalent
Q" then intervenes in a precise estimate of the Mean square error of the Ridge regression. The prediction

then strictly depends on the population covariance matrix of the data. As depicted on Figure [8.10] such
predictions are extremely accurate.
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