
1/20

Statistical

Learning

STA4042

REGRESSION
VS.

CLASSIFICATION

Examples of Classification



1/20

Statistical

Learning

STA4042

REGRESSION
VS.

CLASSIFICATION

Examples of Classification

• A person arrives at the emergency room with a set of symptoms
that could possibly be attributed to one of three medical
conditions.
Which of the three conditions does the individual has?



1/20

Statistical

Learning

STA4042

REGRESSION
VS.

CLASSIFICATION

Examples of Classification

• A person arrives at the emergency room with a set of symptoms
that could possibly be attributed to one of three medical
conditions.
Which of the three conditions does the individual has?

• An online banking service must be able to determine whether or
not a transaction being performed on the site is fraudulent, on the
basis of the user’s IP address, past transaction history, and so forth.



1/20

Statistical

Learning

STA4042

REGRESSION
VS.

CLASSIFICATION

Examples of Classification

• A person arrives at the emergency room with a set of symptoms
that could possibly be attributed to one of three medical
conditions.
Which of the three conditions does the individual has?

• An online banking service must be able to determine whether or
not a transaction being performed on the site is fraudulent, on the
basis of the user’s IP address, past transaction history, and so forth.

• On the basis of DNA sequence data for a number of patients
with and without a given disease, a biologist would like to figure
out which DNA mutations are deleterious (disease-causing) and
which are not.



1/20

Statistical

Learning

STA4042

REGRESSION
VS.

CLASSIFICATION

Examples of Classification

• A person arrives at the emergency room with a set of symptoms
that could possibly be attributed to one of three medical
conditions.
Which of the three conditions does the individual has?

• An online banking service must be able to determine whether or
not a transaction being performed on the site is fraudulent, on the
basis of the user’s IP address, past transaction history, and so forth.

• On the basis of DNA sequence data for a number of patients
with and without a given disease, a biologist would like to figure
out which DNA mutations are deleterious (disease-causing) and
which are not.

Same as for regression:
Training data set: (x1, y1), ..., (xn, yn)

• x1, . . . , xn ∼ X: predictors “quatitative” or “continuous”)

• y1, . . . , yn ∼ Y : classes (“qualitative” or “discrete”)



1/20

Statistical

Learning

STA4042

REGRESSION
VS.

CLASSIFICATION

Examples of Classification

• A person arrives at the emergency room with a set of symptoms
that could possibly be attributed to one of three medical
conditions.
Which of the three conditions does the individual has?
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• On the basis of DNA sequence data for a number of patients
with and without a given disease, a biologist would like to figure
out which DNA mutations are deleterious (disease-causing) and
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Same as for regression:
Training data set: (x1, y1), ..., (xn, yn)

• y1, . . . , yn ∼ Y : classes (“qualitative” or “discrete”)

• x1, . . . , xn ∼ X: predictors “quatitative” or “continuous”)
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From regression to classification with KNN.
i1, . . . , ik s.t.: xi1 , . . . , xik are the k
closest neighbors of x:

∀i ∈ [n] : ∥x− xi∥ ≥ sup
j∈[k]

∥x− xik∥.

Training dataset:
D = {(x1, y1), . . . , (xn, yn)} given

• For regression:

New data test x ∈ Rp:

f̂D(x) ≡ 1

k

k∑
j=1

yij .
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D = {(x1, y1), . . . , (xn, yn)} given

• For regression:

New data test x ∈ Rp:

• For Classification f̂D(x) = l where:

∀h ∈ [k] : #{yij = l} ≥ #{yij = h}

f̂D(x) ≡ 1

k

k∑
j=1

yij .
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From regression to classification with KNN.

k-nearest neighbors method:

i1, . . . , ik s.t.: xi1 , . . . , xik are the k
closest neighbors of x:

∀i ∈ [n] : ∥x− xi∥ ≥ sup
j∈[k]

∥x− xik∥.

Training dataset:
D = {(x1, y1), . . . , (xn, yn)} given

New data test x ∈ Rp:

f̂D(x) = l where ∀h ∈ [k]:

#{yij = l} ≥ #{yij = h}

Trade-off on the number of neighbors k:

k = 1 k = 100



Cosme LOUART · STA4042 4/20

Why not linear regression?

Y =


1 if drug overdose

2 if epileptic seizure

3 if stroke

Choose



Cosme LOUART · STA4042 4/20

Why not linear regression?

Y =


1 if drug overdose

2 if epileptic seizure

3 if stroke

Y =


1 if stroke

2 if epileptic seizure

3 if drug overdose

Choose or ?



Cosme LOUART · STA4042 4/20

Why not linear regression?

Y =


1 if drug overdose

2 if epileptic seizure

3 if stroke

Y =


1 if stroke

2 if epileptic seizure

3 if drug overdose

Choose or ?

Why would we put one value in between ?



Cosme LOUART · STA4042 4/20

Why not linear regression?

Y =


1 if drug overdose

2 if epileptic seizure

3 if stroke

Y =


1 if stroke

2 if epileptic seizure

3 if drug overdose

Choose or ?

Why would we put one value in between ?

drug overdose

epileptic seizure

stroke

X

Y



Cosme LOUART · STA4042 4/20

Why not linear regression?

Y =


1 if drug overdose

2 if epileptic seizure

3 if stroke

Y =


1 if stroke

2 if epileptic seizure

3 if drug overdose

Choose or ?

Why would we put one value in between ?

drug overdose

epileptic seizure

stroke

X

Y Regression
line



Cosme LOUART · STA4042 4/20

Why not linear regression?

Y =


1 if drug overdose

2 if epileptic seizure

3 if stroke

Y =


1 if stroke

2 if epileptic seizure

3 if drug overdose

Choose or ?

Why would we put one value in between ?

drug overdose

epileptic seizure

stroke

X

Y Regression
line

Negative and out of
[0, 1] predictions: not
much sense!
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Why not linear regression?

The annual incomes and monthly credit card balances of a number of individuals.
Orange: defaulted, Blue: did not default.

Back to two classes
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Why not linear regression?

Look for an output that stays close to the discrete values

Linear regression Logistic regression

P(Y = 1) = β0 + β1X P(Y = 1) = eβ0+β1X

1+eβ0+β1X ∈ [0, 1]
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Need a different encoding:

Ex: Y =


(1, 0, 0) if drug overdose

(0, 1, 0) if epileptic seizure

(0, 0, 1) if stroke

e1, e2, 23: “one-hot vectors”

All at the same distance from one another

When more than 2 classes?

P(Y = 1) + P(Y = 2) + P(Y = 3) = 1

P(Y = k) =
eβk,0+βk,1X∑3
l=1 e

βl,0+βl,1X
∈ [0, 1]

Not relevant for our simple methods,
useful for neural network training
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X ∈ Rp, if p > 1: “multiple” or “multivariate” classification

Dataset or “observations”: (x1, y1), . . . , (xn, yn) = n drawings of (X, Y )

∀i ∈ [n] : (xi, yi) ∈ Rp × {1, . . . , k}

Y ∈ {1, . . . , k} ⊂ R, if k > 1: “multinomial” or “multiclass” classification

NB: Often use notation X = (X1, . . . , Xp) ∈ Rp.

Predictors

xi = (x
(i)
1 , . . . , x

(i)
p ) ∈ Rp
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More details on the setting

Want to understand the relation between the predictors X and the class Y .

Random vectors

X ∈ Rp, if p > 1: “multiple” or “multivariate” classification

Y ∈ {1, . . . , k} ⊂ R or Y ∈ {e1, . . . , ek} ⊂ Rk, if k > 1: “multinomial” or “multiclass” classification

Dataset or “observations”: (x1, y1), . . . , (xn, yn) = n drawings of (X, Y )

Goal: New observation x ∼ X → good estimation of class y ?
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Logistic regression

Model: P(Y = 1) = s(β0 + β1X) with s : t 7→ et

1+et
(sigmoid)

Minimize negative loglikelihood:
NL(β) =

∑
yi=0 − log(1−s(β0+β1xi))+

∑
yi=1 − log(s(β0+β1xi))
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Model: P(Y = 1) = s(β0 + β1X) with s : t 7→ et

1+et
(sigmoid)

Minimize negative loglikelihood:
NL(β) =

∑
yi=0 − log(1−s(β0+β1xi))+

∑
yi=1 − log(s(β0+β1xi))

• When p predictors X1, . . . , Xp:
β0 + β1X −→ β0 + β1X1 + · · ·+ βpXp

• When k classes with k > 1
Look for the entries of a matrix
β = (βh,i)h∈[k],i∈[p] ∈ Rk×p+1 with:

Model: P(Y = l) =
eβl,0+βl,1X1+···+βl,pXp∑k

h=1 e
βh,0+···+βh,pXp
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Linear discriminant analysis

Bayes Rule: P(Y = l | X = x)︸ ︷︷ ︸
our objective

P(X = x) = P(X = x | Y = l)︸ ︷︷ ︸
≡fl(x)

P(Y = l)︸ ︷︷ ︸
≡πl

P(X = x)
∑k

l=1 P(Y = l | X = x) =
∑k

l=1 fl(x)πl

Finally: P(Y = l | X = x) = fl(x)πl∑k
h=1 fh(x)πh

In the case of known laws X | Y = l ∼ N (µl,Σl),

i.e. : fl(x) =
exp−

1
2 (x−µl)

TΣ−1
l (x−µl)√

(2π)p det(Σl)

Given data x, look for l ∈ [k] that maximizes P(Y = l | X = x)

If Σ1 = · · · = Σk: lth discriment: δl(x) = xTΣ−1µl − 1
2µ

T
l Σ

−1µl + log(πl)

→ Linear discriminant analysis
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Linear discriminant analysis

Bayes Rule: P(Y = l | X = x)︸ ︷︷ ︸
our objective

P(X = x) = P(X = x | Y = l)︸ ︷︷ ︸
≡fl(x)

P(Y = l)︸ ︷︷ ︸
≡πl

P(X = x)
∑k

l=1 P(Y = l | X = x) =
∑k

l=1 fl(x)πl

Finally: P(Y = l | X = x) = fl(x)πl∑k
h=1 fh(x)πh

In the case of known laws X | Y = l ∼ N (µl,Σl),

i.e. : fl(x) =
exp−

1
2 (x−µl)

TΣ−1
l (x−µl)√

(2π)p det(Σl)

Given data x, look for l ∈ [k] that maximizes P(Y = l | X = x)

If Σ1 = · · · = Σk: lth discriment: δl(x) = xTΣ−1µl − 1
2µ

T
l Σ

−1µl + log(πl)

→ Linear discriminant analysis

C1

C2
C3

δ1 bigger

δ2 bigger
δ3 bigger
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Quadratic discriminant analysis

Model: P(Y = l | X = x) =
fj(x)πl∑k

h=1 fh(x)πh

with : fl(x) =
exp−

1
2 (x−µl)

TΣ−1
l (x−µl)√

(2π)p det(Σl)

δl(x) = xTΣ−1µl − 1
2µ

T
l Σ

−1µl + log(πl)

• Linear discriminent analysis: (Σ1 = · · · = Σk ≡ Σ)
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Quadratic discriminant analysis

Model: P(Y = l | X = x) =
fj(x)πl∑k

h=1 fh(x)πh

with : fl(x) =
exp−

1
2 (x−µl)

TΣ−1
l (x−µl)√

(2π)p det(Σl)

δl(x) = xTΣ−1µl − 1
2µ

T
l Σ

−1µl + log(πl)

• Linear discriminent analysis: (Σ1 = · · · = Σk ≡ Σ)

• Quadratic discriminent analysis: (the covariances are different)

δl(x) = − 1
2x

TΣlx+ xTΣ−1
l µl − 1

2µ
T
l Σ

−1µl + log(πl)− 1
2 log(det(Σl))

−→ More flexible ! but More precise ?

In practice, (µl)l∈[k], (Σl)l∈[k] estimated with ∀l ∈ [k]:

µ̂l ≡
πl

n

n∑
i=1,yi=l

xi and Σ̂l ≡
πl

n

n∑
i=1,yi=l

(xi − µl)(xi − µl)
T

δ2 bigger

δ1 bigger

Pb: Estimation of covariance
highly sensitive to noise.
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Naive Bayes

Always works but lacks some flexibility

Strong hypothesis: All predictors X1, . . . , Xp idpts.

Implies all Σl diagonal and fl(x) = fl(x1) · · · fl(xp)

(Increase bias but decreases variance)

Estimation of the fl,i, l ∈ [k], i ∈ [p]:

• Gaussian assumption fl,i(x) =
e
−

(x−µl,i)
2

2σ2
l,i√

2πσl,i

Discriminant analysis again, given x ∈ Rp choose l that maximizes:

P(Y = l | X = x) =
fl(x)πl∑k

h=1 fh(x)πh

• Directly take histogram fl,i(x) =
∑

b∈bins 1x∈bpb
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• 20 training Gaussian observation
• Observations uncorrelated
→ k-means too deterministic, QDA too flexible
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Comparison

Senario 1: Senario 2:

• 20 training Gaussian observation
• Observations uncorrelated
→ k-means too deterministic, QDA too flexible

• 20 training Gaussian observation
• Correlation of −0.5 between predictors
→ Naive bayes independence assumption not
satisfied

Senario 3:

• 20 training t-distributed
observation
• Correlation of −0.5 between
predictors
→ LDA, QDA assumtions
violated
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• 6 training Gaussian
observations
• no correlation between
predictors but variance different
between classes
→ independence is a perfect fit
for naive Bayes
→ variance too high for QDA

Comparison

Senario 4: Senario 5:

• 20 training Gaussian observation
• Correlations between predictors different
between two classes
→ perfect fit of QDA method (decision boundary
non linear)

• 20 training Gaussian observation
• Response Y logistic image of non linear
transformation of predictors X
→ k-means robust to this difficult setting

Senario 3:
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Here, no specific model for the data (flexible parametric method).

Minimize
1

n

n∑
i=1

l(hw(xi), yi) + λr(yi), w ∈ Rq

More general methods: Empirical risk minimization
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Here, no specific model for the data (flexible parametric method).

Minimize
1

n

n∑
i=1

l(hw(xi), yi)︸ ︷︷ ︸
Loss

+ λr(yi)︸ ︷︷ ︸
Regularization

w ∈ Rq hw: hypothesis
w: parameter

r: regularizing loss, will be studied later in the lecture on interpolation vs extrapolation.

Example

Ridge regression: Minimize 1
n

∑n
i=1 ∥βxi − yi∥2 + λ∥β∥2, β ∈ Rp

Support vector machines (SVM): Minimize 1
n

∑n
i=1 max(1− (βTxi + b)yi) + λ∥β∥2, β ∈ Rp.

Lasso: Minimize 1
n

∑n
i=1 ∥βxi − yi∥2 + λ∥β∥1, β ∈ Rp

Playing on losses can allow to go from classification to regression

More general methods: Empirical risk minimization
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Support vector machines (SVM): Minimize 1
n

∑n
i=1 max(1− (βTxi + b)yi) + λ∥β∥2, β ∈ Rp.

Decision boundary linear → improvement with Kernel
SVM:

Closely related to so-called “Maximal Margin classifier”,
very popular from the 90’s

Some words about “Support vector machines”
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Regression losses Y ∈ R

Minimize
1

n

n∑
i=1

l(hw(xi)−yi) + λr(yi) w ∈ Rq hw(xi)− yi 7→ z
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Regression losses Y ∈ R

Squared loss: l(z) = z2

Used for LSR, sensitive to outliers

Huber loss: l(z) = z2 if |z| < δ, l(z) = 2δ|z| − δ2 othws.
Advantages of squared and absolute loss.

Log-cosh loss: l(z) = log(cosh(z)) (where

cosh(z) ≡ ez+e−z

2 )
Like Huber loss but twice differentiable in 0.

Absolute loss: l(z) = |z|
Provides median labels, less sensitive to outliers, non
differentiable in zero

Minimize
1

n

n∑
i=1

l(hw(xi)−yi) + λr(yi) w ∈ Rq

l(z)

z

hw(xi)− yi 7→ z
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Classification losses Y ∈ {−1, 1}

Minimize
1

n

n∑
i=1

l(hw(xi)·yi) + λr(yi) w ∈ Rq hw(xi)yi 7→ z

In logistic regression look for β ∈ Rp that minimizes:

• log
(
1− eβ

T xi

1+eβ
T xi

)
= −l(βx

i ) = −l(βTxi · yi) if yi = 1

• log
(

eβ
T xi

1+eβ
T xi

)
= log

(
1

e−βT xi+1

)
= −l(βTxi · yi) if yi = −1.

−
∑
yi=1

log

(
eβ

T xi

1 + eβT xi

)
−
∑

yi=−1

log

(
1− eβ

T xi

1 + eβT xi

)
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Classification losses Y ∈ {−1, 1}

Logistic loss: l(z) = log(1 + e−z)
Used for logistic regression, probabilistic interpretation
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Logistic loss: l(z) = log(1 + e−z)
Used for logistic regression, probabilistic interpretation

Exponential loss: l(z) = e−z

Agressive loss used for Adaboost (very sensitive to noise,
works in very particular cases)

Zero-one loss: l(z) = 1z<0

Final loss used to evaluate the performance of a model.
Not continuous so almost impractible for optimization

Hinge loss: l(z) = max(1− z, 0)
Used for Support vector machines (distance between
margin and closest point)

Minimize
1

n

n∑
i=1

l(hw(xi)·yi) + λr(yi) w ∈ Rq

l(z)

z

hw(xi)yi 7→ z


