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1930’s: linear discriminent analysis

1990’s: Support vector machines, beginning of non linear
methods.

But what is it?

2012: Success of Neural networks on Mnist data base

Popular definition of machine learning due to Tom Mitchell:

“A computer program is said to learn from experience E with
respect to some class of tasks T, and performance measure P, if
its performance at tasks in T, as measured by P, improves with
experience E.”

−→ Let us give some examples

What is statistical learning ?
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Prostate cancer

Goal: Predict PSA (enzyma produced by cancer
cells) from other indexes.
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Heart strike

Goal: Predict risk for heart attack
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Spam & ham

• Data from 4601 emails sent to an individual
(named George, at HP labs, before 2000). Each
is labeled as spam or email.
• Input features: relative frequencies of 57 of the
most commonly occurring words and punctuation
marks in these email messages.

Goal: build a customized spam lter.
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Wages

Goal: build a customized spam lter.

Goal: Predict wages from other quatities.
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Genes identification

Goal: Identify guilty genes.
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Fields identification

Goal: Identify fields usage.
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MNIST data base

Goal: Identify figures.
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Netflix challenge

?

? ?

?

?

Goal: predict user’s
score.
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Main concepts to classify a given task

Classification/Regression

Supervised/Unsupervised

Provide a continuous output.

Provide a discrete output (typically a class).

Tackle the problem from scratch like a
baby coming to the world.

Benefits from a “training dataset” with labeled data to
regress or classify “test data”.
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Goal: Identify guilty genes.
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Statistical learning or Machine learning ?

Statistical learning Machine learning

Arose as a sub field of Artificial Intelligence.Arose as a subfield of Statistics.

Greater emphasis on large scale applications
and prediction accuracy.

Considers state of the art algorithms, only
limited by the technniques and equipment

Concerns simple methods that allow
theoretical guarantees

In our course, we will provide:
• coding basis to allow you to do your own scripts
• theoretical statistical basis to let you understand
why those algorithms work.

Data science engineer

Data science researcher

Emphasizes models and their interpretability,
precision and uncertainty.
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“Almost all of machine learning can be viewed in probabilistic terms, making
probabilistic thinking fundamental. It is, of course, not the only view. But it is through this
view that we can connect what we do in machine learning to every other computational
science, whether that be in stochastic optimisation, control theory, operations research,
econometrics, information theory, statistical physics or bio-statistics. For this reason alone,
mastery of probabilistic thinking is essential.”

Shakir Mohamed, DeepMind
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Why “statistical” ?

“Almost all of machine learning can be viewed in probabilistic terms, making
probabilistic thinking fundamental. It is, of course, not the only view. But it is through this
view that we can connect what we do in machine learning to every other computational
science, whether that be in stochastic optimisation, control theory, operations research,
econometrics, information theory, statistical physics or bio-statistics. For this reason alone,
mastery of probabilistic thinking is essential.”

Shakir Mohamed, DeepMind

...Because there exists some

randomness in the data!
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Class 2

X = (x1, . . . , xn) ∈ Rp×n:
Data random matrix

AI(X): random variable

Y = (y1, . . . , yn) ∈
{−1, 1}n

Estimate:
E[∥AI(X)− Y ∥]
P(|AI(xi)− yi| ≥ 1)

Ex 1: Unsupervised learning

What is random in statistical learning ?



Cosme LOUART · STA4042 27/35

Class 1

Class 2

X = (x1, . . . , xn) ∈ Rp×n:
Training data (random)

Ex 2: Supervised learning

AIX
Random

What is random in statistical learning ?



Cosme LOUART · STA4042 27/35

Class 1

Class 2

X = (x1, . . . , xn) ∈ Rp×n:
Training data (random)

Ex 2: Supervised learning

AIX
Random

Test data x ∈ Rp (Random)

What is random in statistical learning ?



Cosme LOUART · STA4042 27/35

Class 1

Class 2

X = (x1, . . . , xn) ∈ Rp×n:
Training data (random)

AIX(x) (random)
Ex 2: Supervised learning

AIX
Random

Test data x ∈ Rp (Random)

What is random in statistical learning ?



Cosme LOUART · STA4042 27/35

Class 1

Class 2

X = (x1, . . . , xn) ∈ Rp×n:
Training data (random)

AIX(x) (random)
Ex 2: Supervised learning

AIX
Random

Test data x ∈ Rp (Random)

y ∈ {−1, 1}: Label of x

Estimate:
E[∥AIX(x)− y∥]
P(|AIX(x)− y| ≥ 1)

What is random in statistical learning ?



Cosme LOUART · STA4042 27/35

Class 1

Class 2

X = (x1, . . . , xn) ∈ Rp×n:
Training data (random)

AIX(x) (random)
Ex 2: Supervised learning

AIX
Random

Test data x ∈ Rp (Random)

y ∈ {−1, 1}: Label of x

Estimate:
E[∥AIX(x)− y∥]
P(|AIX(x)− y| ≥ 1)

What is random in statistical learning ?



Cosme LOUART · STA4042 28/35

Content of the course

I - Major Concepts with examples
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Paradigm

Methods

Interpretable/
Flexible, accurate

Supervised/
Unsupervised

Regression task/
Classification task

Interpolates/
Extrapolates

Regression

Logistic Regression

Ridge regression

Spectral clustering

• Minimization
Problem

Likelyhood minimization

Principal component analysis
(PCA)

Multi-task learning

• Spectral methoods

/ × × /

/ × ×/

×/

/ × /

Neural networks

×/ /

/ ( )

/ ×

×/

×/ / ××/

/ ×

• Monte Carlo

Parameters

Bias/variance trade-off

×/

×/

Regularization, overfit-
ting

×/

×/

Tools & Concepts
involved

Empirical risk minimization ×/ ×/

discriminent analysis
k-means
loss (mse, logistic, ℓ1)

Perameter’s degree of
liberty

Support vector machine

×/

×/

×// × / ( )

/ / ×

/

( ) / ( ) /

×/

Resampling (Cross-
validation, Bootstrap,
Random forest)
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Content of the course

I - Major Concepts with examples

II - Rigorous probability inferences

a) Interpretable vs. flexible methods.

b) Classification and regression algorithms.

c) Supervised and Unsupervised algorithms.

d) Interpolation vs. Extrapolation.

a) Bias/variance tradeoff, estimator evaluation, MLE

b) Conditioning and Bayes computation, MAP

c) Concentration of the measure phenomenon (basics), the curse of dimension.

d) Random matrix basics
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Work with Python

I - Download miniconda from
https://docs.anaconda.com/miniconda/

install packages with:
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple some-package

II - Download Visual studio code from:
https://code.visualstudio.com/download

Packages required:
ipykernel,numpy,pandas,mathplotlib

Install extensions: python,jupyter

→ Strongly encouraged to use jupyter (ipynb).
(can provide explainations, easier to interact with
code and find typos/mistakes)


