What is the difference?

Supervised Unsupervised

(Metric to

Look for f that should satisfy "V ~ f(X)" be defined)

SUPERVISED
VS.
UNSUPERVISED

*the term “unsupervised regression” appears in dimension reduction problems 17



What is the difference?

Supervised Unsupervised

Look for f that should satisfy "V ~ f(X)"

Training dataset:
D = {(3317 yn)a sy (xna yn)}

SUPERVISED
VS.
UNSUPERVISED

*the term “unsupervised regression” appears in dimension reduction problems 17



What is the difference?

Supervised Unsupervised

Look for f that should satisfy "V ~ f(X)"

Training dataset: : Dataset:
D={(z1,yn)--s (Tn,yn)} D={x1...,2,}

SUPERVISED
VS.
UNSUPERVISED

*the term “unsupervised regression” appears in dimension reduction problems 17



What is the difference?

Supervised Unsupervised

Look for f;, that should satisfy  “Y =~ fo(X)"

Training dataset: : Dataset:
D={(z1,yn)--s (Tn,yn)} D={x1...,2,}

SUPERVISED
VS.
UNSUPERVISED

*the term “unsupervised regression” appears in dimension reduction problems 17



SUPERVISED
VS.
UNSUPERVISED

What is the difference?

Supervised Unsupervised

Look for f;, that should satisfy  “Y =~ fo(X)"

Training dataset: : Dataset:
D={(z1,yn)--s (Tn,yn)} D={x1...,2,}

Often introduce the data matrix:
' X=(r1...,2,) € RPX?

*the term “unsupervised regression” appears in dimension reduction problems 17



SUPERVISED
VS.
UNSUPERVISED

What is the difference?

Supervised Unsupervised

Look for f;, that should satisfy  “Y =~ fo(X)"

Training dataset: - Ef’tatior: Dataset:
D = {(xla yn)) R (wn: yn)} am SOD :; {371 e 73777,}

Often Ercr"oduce the data matrix:

X=(r1...,2,) € RPX?

*the term “unsupervised regression” appears in dimension reduction problems 17



SUPERVISED
VS.
UNSUPERVISED

What is the difference?

Supervised Unsupervised

Look for f;, that should satisfy  “Y =~ fo(X)"

Training dataset: : Dataset:
D={(z1,yn)--s (Tn,yn)} D={x1...,2,}

Often introduce the data matrix:
' X=(r1...,2,) € RPX?

*the term “unsupervised regression” appears in dimension reduction problems 17



What is the difference?

Supervised Unsupervised

Look for f;, that should satisfy  “Y =~ fo(X)"

Training dataset: : Dataset:
D={(z1,yn)--s (Tn,yn)} D={x1...,2,}

‘ ‘ ‘ ‘ ‘ Often introduce the data matrix:
X=(xy...,z,) € RPX™
SU PERVISED Regression or Classification Just Classification™: "Clustering”
VS. =
UNSUPERVISED

*the term “unsupervised regression” appears in dimension reduction problems 17



What is the difference?

Supervised Unsupervised

Look for f;, that should satisfy  “Y =~ fo(X)"

Training dataset: : Dataset:
D={(z1,yn)--s (Tn,yn)} D={x1...,2,}

‘ ‘ ‘ ’ ‘ Often introduce the data matrix:
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What is the difference?

Supervised Unsupervised

Look for f;, that should satisfy  “Y =~ fo(X)"

Training dataset: : Dataset:
D={(z1,yn)--s (Tn,yn)} D={x1...,2,}

‘ ‘ ‘ ‘ ‘ Often introduce the data matrix:

X=(r1...,2,) € RPX?

Regression or Classification Just Classification™: “"Clustering”
SUPERVISED : e

Given a new data z:
VS label is fD(iU) Labels: fD’(xl)w--afD’(xn)

UNSUPERVISED Semi—sulpervised

Given a set of labeled data D, and a set of unlabeled data D’
For new test data x € R?, label: fp pr(x).

*the term “unsupervised regression” appears in dimension reduction problems
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Clustering method 1: k-means

[
b Step ! toration 1, Step 22 Clustering in iterative steps until

. g s convergence:
REDUEE T SR Step 0 randomly partition the data in &

o . - Cluster. |
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e L . N e find the centroid of

each cluster

Iteration 1, Step 2b Iteration 2, Step 2a Final Results ® Classrfy each p0|nt
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O © centroid.
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Clustering method 1: k-means
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Final Results
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Clustering in iterative steps until

convergence.

Step 0 randomly partition the data in k

cluster

Step 1 — ¢ + 1:

e find the centroid of
each cluster

e classify each point
along with the closest
centroid.

Cosme LOUART - STA4042

Possibility to fail




Clustering method 2: PCA + k-means
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Clustering method 2: PCA + k-means

Il
Principal component analysis
(PCA) generally used to reduce
dimension.
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Clustering method 2: PCA + k-means

Il
Principal component analysis
(PCA) generally used to reduce

dimension.

p — d with d small

Given (z1,...,x,) € RPX",
Look for uq,...,ug orthonormal,

such that (u”'x;);cp, has the
biggest variance.

Maximize u € RP:

ul <1XXT - iX1£1nXT> u

n n?

Exactly the first d eigenvectors of
(tXXT - X111, XT).
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Clustering method 2: PCA + k-means

Il
Principal component analysis

Left) 3d representation of the data, the plane is directed by the two first
(Left) P P ) (PCA) generally used to reduce

principal component. (Right) coordinates of the data projected on the two

first principal components. dimension. |
p — d with d small
: Given (z1,...,x,) € RP*",

Look for uq,...,ug orthonormal,
such that (u”'x;);cp, has the
biggest variance.

0.5

Second principal component
0.0

Maximize u € RP:

-0.5

-1.0

| |
-1.0 -05 0.0 0.5 1.0 T ’rL2

First principal component

I - u” <1XXT — iX13;1,n,XT> u

Exactly the first d eigenvectors of
(tXXT - X111, XT).
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Clustering method 2: PCA + k-means

Il
Principal component analysis

Left) 3d representation of the data, the plane is directed by the two first
(Left) P P ) (PCA) generally used to reduce

principal component. (Right) coordinates of the data projected on the two

first principal components. dimension. |
p — d with d small
: Given (z1,...,x,) € RP*",

Look for uq,...,ug orthonormal,
such that (u”'x;);cp, has the
biggest variance.

0.5

Second principal component
0.0

Maximize u € RP:

-0.5

1.0

| |
-1.0 -05 0.0 0.5 1.0 T ’rL2

First principal component

| | u? <1XXT - iX1£1nXT> u

Exactly the first d eigenvectors of
—— For classification, do k-means on uq, ..., uy. (XX - L Xx1l1, x1).

X KGR G o Cosme LOUART - STA4042
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Clustering method 3: Spectral clustering

Two classes:

'$1,.-~,$n/2NN(M,]p)

¢ $n/2—|—17 ceeydp N(_:ualp)

with © = (2,0,...,0) € R?, n =500, p = 5.

= (K (4, 75))ijefn € R

2
_ llz—yll

with for ex. K(x,y) =e 2> ("Heat kernel”)
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with © = (2,0,...,0) € R?, n =500, p = 5.

= (K (4, 75))ijefn € R

2
_ llz—yll

with for ex. K(x,y) =e 2> ("Heat kernel”)

—> Look for first eigenvectors of K should capture
class information
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Clustering method 3: Spectral clustering

Two classes:

'$1,.-~,$n/2NN(M,]p)

¢ $n/2—|—17 ceeydp N(_:ualp)

with © = (2,0,...,0) € R?, n =500, p = 5.

= (K (4, 5))ijem € R

2
_ llz—yll

rex. K(x,y) =e 2 (“Heat kernel”)

—> Look for first eigenvectors of K should capture
class information

When doing PCA, work with
~XXT e RP*P,

y = o SCHOOL OF
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Semi-supervised learning with empirical risk minimization

Setting:
O
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Semi-supervised learning with empirical risk minimization

Setting:

Solution
O
®
abeled data

)

Unlabeled data

& AP KL CGEI) SCHOOL OF |
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Semi-supervised learning with empirical risk minimization

Setting: Main idea:

Take advantage of both the labeled and the
unlabeled data to make the classification

Solution
O
®
abeled data
»
Unlabeled data
- k %‘a_ (7 i)']) SCHOOL OF i
esercniversityof I—jllz)ngKong, Shenzhen S :: ;’;\ ;f;i;cp; Cosm e LO U A RT STA4O42 5 / 7




Semi-supervised learning with empirical risk minimization

B
Setting: N Main idea:

Take advantage of both the labeled and the
unlabeled data to make the classification

Solution

Combines supervised and unsupervised methods

: Labeled data

Unlabeled data

C M
*
e
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Semi-supervised learning with empirical risk minimization

Setting: Main idea:

Take advantage of both the labeled and the
unlabeled data to make the classification

Solution

Combines supervised and unsupervised methods

Best formulation given by the Empirical risk
minimization (ERM):

Minimize on w € RY:

o iy Li(h (24), yi) + 5= 3002 Lu(hu(2:)) + 7(w)

® | abeled data: (x1,Y1)s -5 (X0, Yn,) € RP x {—1,1} _ ;
® Unsupervised
Supervised Regularisation

Unlabeled data: zq,...,z, €RP Loss
Loss

=)
of Hong Kong, Shenzhen

C57 oATh SCTENCE Cosme LOUART - STA4042

BTN 5/7




Semi-supervised learning with empirical risk minimization

Il
Classification example: minimize on w € RY:

nil D imq Li(ho (), yi) + i D icty Lu (b (20)) + 1 (hay)
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Semi-supervised learning with empirical risk minimization

Il
Classification example: minimize on w € RY:

nil D imq Li(ho (), yi) + i D icty Lu (b (20)) + 1 (hay)

Look for a linear boundary: ho(z) = wla
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Semi-supervised learning with empirical risk minimization

Il
Classification example: minimize on w € RY:

nil D imq Li(ho (), yi) + i D icty Lu (b (20)) + 1 (hay)

Look for a linear boundary: ho(z) = wla

Choice for the Supervised loss:
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Semi-supervised learning with empirical risk minimization

Il
Classification example: minimize on w € RY:

nil D imq Li(ho (), yi) + i D ey Lu(hw(2i)) +7(hay)

Look for a linear boundary: ho(z) = wla

Choice for the Supervised loss:

With y; - w!'z; — ¢:

Logistic loss: L;(t) = log(1 +e~*) (LR)
Hinge loss: L;(t) = max(1 —t¢,0) (SVM)
Exponential loss: L;(t) = e~ (Adaboost)

ekl G e Cosme LOUART - STA4042 .
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Semi-supervised learning with empirical risk minimization

Il
Classification example: minimize on w € RY:
LS Ly(ha (i), ys) + 72 00 Lu(hao(23)) +7(ha)
Look for a linear boundary: ho(z) = wla
Choice for the Supervised loss: Choice for the Unsupervised loss:
With vy; - wlz; — t: Pb: Unsupervised clustering loss still not provided
Logistic loss: L;(t) = log(1 +e~*) (LR) Get inspiration from PCA:
Hinge loss: L;(t) = max(1 —t,0) (SVM) Minimize == > w!'z;2lw

u

Exponential loss: L;(t) = e~* (Adaboost)

SCHOOL OF

L) A Cosme LOUART - STA4042
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Semi-supervised learning with empirical risk minimization

Classification example: minimize on w € RY: .
P = Need to work with centered data:

me 2oiy Li(hao (), y3) + 7 320 Lu(hao(20)) + 7 () Set m = LS oy 4 LS 2
a:z —x;—m

Look for a linear boundary: ho(z) = whs G AT m

Choice for the Supervised loss: Choice for the Unsupervised loss:

With y; - w!'z; — ¢: Pb: Unsupervised clustering loss still not provided

Logistic loss: L;(t) = log(1 +e~*) (LR) Get inspiration from PCA:

Hinge loss: L;(t) = max(1 —t,0) (SVM) Minimize % Sy wt z; 2w

Exponential loss: L;(t) = e~ (Adaboost) w: first principal component

L. (t) = t? but also possible L, (t) = |t],
Entropy loss: L, (t) = tlog(t) when Y € {0,1}

L} Sf\?ﬂ%%é’ém Cosme LOUART - STA4042
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Semi-supervised learning with empirical risk minimization

Minimize on w &€ RY:

nil Zyil Ll(hw (x%)a y@) + i Z?:u1 Lu(hw(zz)) - T(hw)

Lraza) G St Cosme LOUART - STA4042
o

ese University of Hong Kong, Shenzhen B30 % B R
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Semi-supervised learning with empirical risk minimization

Minimize on w € RY:
S — Trade-off between «; and «, to

%ﬁ > ity Li(how(24), i) + z—z > ity Lu(haw(2:)) +7(h) weight the contribution of labeled and
unlabeled data.

0.84

0.82

= g = 2 (th)
B ¢=2(emp)
¢ ¢ =1.5(th)

Classification accuracy

08| & =15 (emp) |
| | | |
0 20 40 60 80 100
Xq,
g S Sa SCHOOL OF
e Chi eser(rﬁj(_e\rsf‘yioi an;ZlL)ong, Shenzhen S :: ;-; ;f;E;cP; COsm e I_O U A RT * STA4042 7 /7




Semi-supervised learning with empirical risk minimization

Minimi n RY:
Inimize on w € — Trade-off between «o; and a,, to

ff,—; ie1 Li(ho (i), yi) + z—z > ity Ly(h(23)) + 1 (o) weight the contribution of labeled and
unlabeled data.

Accuracy for two losses:

. Ly=1L,:t—t?withg=2,1.5
S 0.84 .
S Low density of unlabeled data:
S Ny
: = 17
S
S 082 No big influence of the loss, curve
2 > g=2(th different but maximum equal.
S B ¢=2(emp)

gg| | a= 15 )

' ¢ ¢=15(emp)

I | |
0 20 40 60 80 100
Xy

g S Sa SCHOOL OF
R et S oATA SCTNCE Cosme LOUART - STA4042 77




